【C++ 第十四章】红黑树

2024-08-21 06:44
文章标签 c++ 红黑树 第十四章

本文主要是介绍【C++ 第十四章】红黑树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

学习本章,需要先学习 AVL树的 旋转,因为 红黑树也需要旋转调整来平衡,下面讲解将不赘述 旋转的原理和操作

红黑树的旋转 和 AVL树的旋转 唯一不同的是:旋转的判断使用逻辑

AVL树的旋转 可以通过 平衡因子 判断使用哪一种旋转

红黑树的旋转 则 直接通过 判断 爷爷 grandfather、父亲 parent、自己 cur 三种节点之间的位置关系 来 判断使用哪一种 旋转


其实原理都一样,只不过AVL树有了平衡因子,可以直接借助平衡因子判断,其核心还是爷父子三者位置关系


🦖1. 红黑树的概念

        红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是 Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的

(即 最长路径 长度一定 小于等于 最短路径的*2 )



🦖2. 红黑树的 4 条性质(决定代码实现逻辑)

(1)二叉搜索树的结构

(2)根和叶子(NULL)都是黑色

(3)不存在连续的两个红色结点

(4)任一结点到叶所有路径黑结点数量相同


四条性质可以总结成 四条口诀

左根右、根叶黑、不红红、黑路同


🦖⭐(1)左根右

即 左根右 的 二叉搜索树结构

🦖⭐(2)根叶黑

       根和叶子(NULL)都是黑色

        划蓝色虚线的 节点 10 即为 根节点

        划蓝色虚线的 长方形节点,空节点 NULL

        这两种节点都必须是 黑色!



🦖⭐(3)不红红

不存在连续的两个红色结点

下图中 节点 7 和 节点 5 两个连续红节点的情况不合法,需要进一步调整(后序讲解)


🦖⭐(4)黑路同

任一结点到叶所有路径黑结点数量相同

下图中,每条路径的 黑色节点个数 都是 3 ,这就是合法

注意:一条路径的终点一定是 NULL 空节点!!!


🦖3. 为什么说 "红黑树的最长路径不会超过最短路径的两倍 "

因为所有路径黑色节点的数量必须相同(黑路同),同时 红色节点不能连续出现(不红红)

因此 最长路径一定是 一黑一红 的排列

则 最长的那条路径:即使下面再加一个 红色节点,也只是刚好 是最短路径的两倍,而绝对不会超过 最左边的最短路径


🦖4. 红黑树节点 定义

// 设置颜色枚举值
enum Colour {RED,BLACK
};template<class K, class V>
struct RBTreeNode
{typedef RBTreeNode<K, V> Node;pair<K, V> _data;  Node* _left;Node* _right;Node* _parent;Colour _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr){}
};

🦖5. 红黑树的插入

🦖5.1 插入的节点 默认是 红色

为什么?看下面例子

🦖⭐当 插入的节点 7 为 黑色时

黑色节点 的 插入,必然会违反 ”黑路同“ 的性质,因此要对其他节点都进行调整(其他节点都要再加一个黑色节点)


当 插入的节点 7 为 红色 ,且 该节点插在 黑色节点 8 下面时

可以发现,插入一个 红色节点并没有影响 任何一个 红黑树的性质,即不用做出调整


当 插入的节点 7 为 红色 ,且 该节点插在 红色节点 8 下面时

若 在 红色节点后面插入一个 红色节点,会违反 ”不红红“ 的性质,则需要调整


综上所述,插入黑色节点就一定需要调整,插入红色节点却可能不需要调整

因此,插入红色节点的性价比最高

🦖5.2 插入节点后,若性质被破坏,分三种情况调整

(注意:是性质被破坏了,才需要调整,没被破坏不需要调整)

🦖(1)插入结点是根结点:

        直接将 节点变黑就行

如果非根节点:看叔叔颜色

🦖(2)插入结点的叔叔 uncle 是红色


该情况处理步骤:

1、将叔父爷变色(即除了自己 cur 以外的三个节点)


2、再将 cur 指向 爷爷

(然后继续对这个 cur 进行这 红黑树 4条性质的判定,看是否违反,即 从 cur 开始 继续向上调整)


🦖(3)插入结点的叔叔 uncle 是黑色:旋转 + 变色

注意:黑色节点也可以是 NULL 空节点


直接通过 判断 爷爷 grandfather、父亲 parent、自己 cur 三种节点之间的位置关系 来 判断使用哪一种 旋转

因为 单旋 LL型 和 RR 型的原理一致,双旋 LR 型 和 RL 型的原理一致

下面我就以 LL 型 和 LR 型举例讲解旋转的步骤

🦖LL 型:


1、以爷爷为旋转点,向右旋转

2、变色:爷变红,父变黑

🦖LR 型


1、先 以 father 为旋转点 旋转,再以 爷爷 为旋转点 旋转

2、爷变红,cur 变黑


🦖小结:都是固定步骤

单旋 LL型 和 RR 型

        旋转:以爷爷为旋转点 左旋 或 右旋(父亲为 旋转中心轴)

        变色:爷变红,父变黑

双旋 LR 型 和 RL 型

        旋转:先 旋转 父亲 father,再 旋转 爷爷

        变色:爷变红,cur 变黑


🦖5.3 插入节点中 旋转变色逻辑 代码讲解

根据上面的讲解,可以发现,决定红黑树 旋转 or 变色 的是  爷父子的位置关系 和 叔叔的颜色

因此代码逻辑 也要 以这两点为中心 设计

🦖伪代码:

因为插入节点是 红色,父亲为空时,违反 "不红红" 的性质,则进入循环执行调整

while ( 父亲不为空  同时  父亲的颜色为红色 )

{

        if ( 父亲是  爷爷 的 孩子 ) 

                if ( 叔叔是 色 ) 

                else if ( 叔叔是 色 ) 

                         if ( cur 是 父亲的 )

                         else if ( cur 是 父亲的 )

        else if ( 父亲是  爷爷 的 孩子 ) 

                if ( 叔叔是色 ) 

                else if ( 叔叔是 色 ) 

                         if ( cur 是 父亲的 左 )

                         else if ( cur 是 父亲的 )

}

🦖实际代码:

// 变色调整:
while (parent && parent->_col == RED) {Node* Grandfather = parent->_parent;/*gp     u*/// 父亲是  爷爷 的左孩子if (parent == Grandfather->_left) {Node* Uncle = Grandfather->_right;// 叔叔是 红色:三人变色,cur指爷if (Uncle && Uncle->_col == RED) {parent->_col = BLACK;Uncle->_col = BLACK;Grandfather->_col = RED;cur = Grandfather;parent = cur->_parent;}// 叔叔是 黑色:旋转后变色else if (Uncle == nullptr || Uncle->_col == BLACK) {// 看 cur 的位置:决定单旋 or 双旋if (cur == parent->_left) {/*  右单旋 + 变色gp       uc*/rotateLL(Grandfather);// 爷变红,父变黑Grandfather->_col = RED;parent->_col = BLACK;}else if (cur == parent->_right) {/*  双旋(先左旋后右旋) + 变色gp        uc*/rotateRR(parent);  // p 先 左旋rotateLL(Grandfather);  //  g 再右旋// 爷变红,cur 变黑Grandfather->_col = RED;cur->_col = BLACK;}break;  // 旋转后,退出循环}}// 父亲是  爷爷 的右孩子else if (parent == Grandfather->_right) {Node* Uncle = Grandfather->_left;// 叔叔是 红色:三人变色,cur指爷if (Uncle && Uncle->_col == RED) {parent->_col = BLACK;Uncle->_col = BLACK;Grandfather->_col = RED;cur = Grandfather;parent = cur->_parent;}// 叔叔是 黑色:旋转后变色else if (Uncle == nullptr || Uncle->_col == BLACK) {// 看 cur 的位置:决定单旋 or 双旋if (cur == parent->_right) {/*  左单旋 + 变色gu       pc*/rotateRR(Grandfather);// 爷变红,父变黑Grandfather->_col = RED;parent->_col = BLACK;}else if (cur == parent->_left) {/*  双旋(先右旋后左旋) + 变色gu         pc*/rotateLL(parent);  // p 先 右旋rotateRR(Grandfather);  //  g 再左旋// 爷变红,cur 变黑Grandfather->_col = RED;cur->_col = BLACK;}break;  // 旋转后,退出循环}}
}// 根节点强制变色
_root->_col = BLACK;

🦖5.4 insert 函数 总代码

// 插入
bool insert(const pair<K, V>& kv) {if (_root == nullptr) {_root = new Node(kv);_root->_col = BLACK; // 根节点一定是黑的return true;}Node* cur = _root;Node* parent = cur;while (cur) {if (cur->_kv.first < kv.first) {parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first) {parent = cur;cur = cur->_left;}else return false;}// 在 cur 的位置插入该节点cur = new Node(kv);cur->_col = RED;  // 新增节点给 红的// 父连子,子连父if (parent->_kv.first > kv.first) parent->_left = cur;else  parent->_right = cur;cur->_parent = parent;// 变色调整:while (parent && parent->_col == RED) {Node* Grandfather = parent->_parent;/*gp     u*/// 父亲是  爷爷 的左孩子if (parent == Grandfather->_left) {Node* Uncle = Grandfather->_right;// 叔叔是 红色:三人变色,cur指爷if (Uncle && Uncle->_col == RED) {parent->_col = BLACK;Uncle->_col = BLACK;Grandfather->_col = RED;cur = Grandfather;parent = cur->_parent;}// 叔叔是 黑色:旋转后变色else if (Uncle == nullptr || Uncle->_col == BLACK) {// 看 cur 的位置:决定单旋 or 双旋if (cur == parent->_left) {/*  右单旋 + 变色gp       uc*/rotateLL(Grandfather);// 爷变红,父变黑Grandfather->_col = RED;parent->_col = BLACK;}else if (cur == parent->_right) {/*  双旋(先左旋后右旋) + 变色gp        uc*/rotateRR(parent);  // p 先 左旋rotateLL(Grandfather);  //  g 再右旋// 爷变红,cur 变黑Grandfather->_col = RED;cur->_col = BLACK;}break;}}// 父亲是  爷爷 的右孩子else if (parent == Grandfather->_right) {Node* Uncle = Grandfather->_left;// 叔叔是 红色:三人变色,cur指爷if (Uncle && Uncle->_col == RED) {parent->_col = BLACK;Uncle->_col = BLACK;Grandfather->_col = RED;cur = Grandfather;parent = cur->_parent;}// 叔叔是 黑色:旋转后变色else if (Uncle == nullptr || Uncle->_col == BLACK) {// 看 cur 的位置:决定单旋 or 双旋if (cur == parent->_right) {/*  左单旋 + 变色gu       pc*/rotateRR(Grandfather);// 爷变红,父变黑Grandfather->_col = RED;parent->_col = BLACK;}else if (cur == parent->_left) {/*  双旋(先右旋后左旋) + 变色gu         pc*/rotateLL(parent);  // p 先 右旋rotateRR(Grandfather);  //  g 再左旋// 爷变红,cur 变黑Grandfather->_col = RED;cur->_col = BLACK;}break;}}}// 修改一:根节点强制变色_root->_col = BLACK;return false;
}

🦖6. 红黑树的删除

红黑树的删除本节不做讲解,有兴趣的同学可参考:《算法导论》或者《STL源码剖析》 http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.html

🦖7. 红黑树与AVL树的比较

        之前讲到的AVL树,它是左右子树的高度相差不会超过一,可以发现 AVL树 对于平衡的要求会更加严格,因此 AVL树在树高上面要比红黑树控制的更加平衡,查询节点的时间复杂度为 logN

因为红黑树的最长路径 可以为最短路径的2倍,因此 查询节点的时间复杂度为 log 2*N

        所以在查询上面红黑树要略逊于  AVL树,当然在时间复杂度上都是同一个数量级,都是O(logN),差距不会太大

        恰恰因为 AVL树 要严格的控制树的平衡,因此 插入删除 操作后,旋转的次数较多

        而 红黑树 插入删除 操作中,旋转的次数较少

        所以相比之下, AVL树 在查询上边呢更高效;红黑树 在插入删除上边更高效

        在实际应用当中呢,红黑树 用的更广泛一些,比如说 C++的STL 当中的 map 和 set 都是基于红黑树实现的(下一个章节会讲解 【map 和 set 对红黑叔的封装】)

Java 库 、 linux内核 、其他一些库 都有使用 红黑树

🦖8. ⭐红黑树的完整代码

#pragma once
#include<iostream>
#include<vector>
#include<assert.h>
using namespace std;///// 设置颜色枚举值
enum Colour {RED,BLACK
};template<class K, class V>
struct RBTreeNode
{typedef RBTreeNode<K, V> Node;pair<K, V> _kv;Node* _left;Node* _right;Node* _parent;Colour _col;RBTreeNode(const pair<K, V>& data):_kv(data), _left(nullptr), _right(nullptr), _parent(nullptr){}
};template<class K, class V>
class RBTree
{
public:typedef RBTreeNode<K, V> Node;RBTree() = default;~RBTree() {destory(_root);_root = nullptr;}// 查找Node* find(const K& key) {Node* cur = _root;while (cur) {if (key > cur->_kv.first) {cur = cur->_right;}else if (key < cur->_kv.first) {cur = cur->_left;}else {return cur;}}return nullptr;}// 插入bool insert(const pair<K, V>& kv) {if (_root == nullptr) {_root = new Node(kv);_root->_col = BLACK; // 根节点一定是黑的return true;}Node* cur = _root;Node* parent = cur;while (cur) {if (cur->_kv.first < kv.first) {parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first) {parent = cur;cur = cur->_left;}else return false;}// 在 cur 的位置插入该节点cur = new Node(kv);cur->_col = RED;  // 新增节点给 红的// 父连子,子连父if (parent->_kv.first > kv.first) parent->_left = cur;else  parent->_right = cur;cur->_parent = parent;// 变色调整:while (parent && parent->_col == RED) {Node* Grandfather = parent->_parent;/*gp     u*/// 父亲是  爷爷 的左孩子if (parent == Grandfather->_left) {Node* Uncle = Grandfather->_right;// 叔叔是 红色:三人变色,cur指爷if (Uncle && Uncle->_col == RED) {parent->_col = BLACK;Uncle->_col = BLACK;Grandfather->_col = RED;cur = Grandfather;parent = cur->_parent;}// 叔叔是 黑色:旋转后变色else if (Uncle == nullptr || Uncle->_col == BLACK) {// 看 cur 的位置:决定单旋 or 双旋if (cur == parent->_left) {/*  右单旋 + 变色gp       uc*/rotateLL(Grandfather);// 爷变红,父变黑Grandfather->_col = RED;parent->_col = BLACK;}else if (cur == parent->_right) {/*  双旋(先左旋后右旋) + 变色gp        uc*/rotateRR(parent);  // p 先 左旋rotateLL(Grandfather);  //  g 再右旋// 爷变红,cur 变黑Grandfather->_col = RED;cur->_col = BLACK;}break;}}// 父亲是  爷爷 的右孩子else if (parent == Grandfather->_right) {Node* Uncle = Grandfather->_left;// 叔叔是 红色:三人变色,cur指爷if (Uncle && Uncle->_col == RED) {parent->_col = BLACK;Uncle->_col = BLACK;Grandfather->_col = RED;cur = Grandfather;parent = cur->_parent;}// 叔叔是 黑色:旋转后变色else if (Uncle == nullptr || Uncle->_col == BLACK) {// 看 cur 的位置:决定单旋 or 双旋if (cur == parent->_right) {/*  左单旋 + 变色gu       pc*/rotateRR(Grandfather);// 爷变红,父变黑Grandfather->_col = RED;parent->_col = BLACK;}else if (cur == parent->_left) {/*  双旋(先右旋后左旋) + 变色gu         pc*/rotateLL(parent);  // p 先 右旋rotateRR(Grandfather);  //  g 再左旋// 爷变红,cur 变黑Grandfather->_col = RED;cur->_col = BLACK;}break;}}}// 修改一:根节点强制变色_root->_col = BLACK;return false;}// RR型:左单旋void rotateRR(Node* parent) {Node* subR = parent->_right;Node* subRL = subR->_left;Node* parentParent = parent->_parent;// 1、subRL变成parent的右孩子parent->_right = subRL;// subRL 是有可能为 空的if (subRL) {subRL->_parent = parent;}// 2、parent变成subR的左孩子subR->_left = parent;parent->_parent = subR;// 3、subR变成当前子树的根// parentParent 是指 刚开始的 parent 的父亲:若 parent 是 _root 则 parentParent 为空,否则不为空,则该树就是子树if (parentParent) {if (parent == parentParent->_right)parentParent->_right = subR;else parentParent->_left = subR;subR->_parent = parentParent;}// 如果 parentParent == nullptr:说明 parent 是该树的 _root,_root 的 parent 是空else {_root = subR;subR->_parent = nullptr;}}// LL型:右单旋void rotateLL(Node* parent) {Node* subL = parent->_left;Node* subLR = subL->_right;Node* parentParent = parent->_parent;// 1、subLR变成parent的左孩子parent->_left = subLR;// subRL 是有可能为 空的if (subLR) {subLR->_parent = parent;}// 2、parent变成subL的右孩子subL->_right = parent;parent->_parent = subL;// 3、subL 变成当前子树的根// parentParent 是指 刚开始的 parent 的父亲:若 parent 是 _root 则 parentParent 为空,否则不为空,则该树就是子树if (parentParent) {if (parent == parentParent->_right)parentParent->_right = subL;else parentParent->_left = subL;subL->_parent = parentParent;}// 如果 parentParent == nullptr:说明 parent 是该树的 _root,_root 的 parent 是空else {_root = subL;subL->_parent = nullptr;}}// LR 型:subL 先 左旋, parent 右旋void rotateLR(Node* parent) {rotateRR(parent->_left);rotateLL(parent);}// RL 型:subR 先 右旋, parent 左旋void rotateRL(Node* parent) {rotateLL(parent->_right);rotateRR(parent);}// 中序遍历void InOrder() {_InOrder(_root);cout << '\n';}// 获取该树的高度int Height() {return _Height(_root);}// 获取节点个数int Size() {return _Size(_root);}// 判断是否是 红黑树bool IsValidRBTree() {if (_root == nullptr) return false;else if (_root && _root->_col == RED) return false;// 遍历一条路,记录一条路上一共固定有多少个黑色节点int cnt = 0;Node* cur = _root;while (cur) {if (cur->_col == BLACK) cnt++;cur = cur->_left;}return _IsValidRBTree(_root, 0, cnt);}private://  判断是否是 红黑树bool _IsValidRBTree(Node* pRoot, size_t k, const size_t blackCount){// 1、看根节点是否是 黑的// 2、看每条路径的 黑色节点数量是否相同// 3、检查是否有连续的红节点:遇到一个红节点就判断其父亲是否是 红的//走到null之后,判断 k 和 blackCount 是否相等:即一条路径上的 黑色节点数量是否为固定值if (pRoot == nullptr){if (k != blackCount){cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;return false;}return true;}// 统计黑色节点的个数if (pRoot->_col == BLACK)k++;// 检测当前节点与其双亲是否都为红色Node* pParent = pRoot->_parent;if (pParent && pParent->_col == RED && pRoot->_col == RED){cout << "违反性质三:没有连在一起的红色节点" << endl;return false;}return _IsValidRBTree(pRoot->_left, k, blackCount) && _IsValidRBTree(pRoot->_right, k, blackCount);}int _Size(Node* pRoot) {if (pRoot == nullptr) return 0;//if (pRoot->_left == nullptr && pRoot->_right == nullptr) return 1;return 1 + _Size(pRoot->_left) + _Size(pRoot->_right);}int _Height(Node* pRoot) {if (pRoot == nullptr)return 0;return 1 + max(_Height(pRoot->_left), _Height(pRoot->_right));}// 销毁一棵树:后序遍历void destory(Node* root) {if (root == nullptr) {return;}destory(root->_left);destory(root->_right);delete root;}void _InOrder(const Node* root) {if (root == nullptr) {return;}_InOrder(root->_left);cout << (root->_kv).first << " : " << (root->_kv).second << '\n';_InOrder(root->_right);}Node* _root = nullptr;
};

参考文献和资料

B站 up :蓝不过海呀

【红黑树 - 定义, 插入, 构建】https://www.bilibili.com/video/BV1Xm421x7Lg?vd_source=bea8fdb0eb9c0c7d500ffd191a292977

这篇关于【C++ 第十四章】红黑树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092419

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元