【线性相关 vs 双变量回归】数据点在斜率周围的聚集程度与斜率本身并不是一回事。

本文主要是介绍【线性相关 vs 双变量回归】数据点在斜率周围的聚集程度与斜率本身并不是一回事。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关性分析(具体来说,皮尔逊成对相关性)和回归分析(具体来说,双变量最小二乘 (OLS) 回归)具有许多共同的特征:

  • 两者都定期应用于两个连续变量(我们称之为 X 和 Y)。
  • 通常向学生介绍这两种图表时使用的是同一类型的图表:散点图。
  • 二者从根本上讲都是关于 X 中的偏差(即相对于平均值的单个值)与 Y 中的偏差之间的关系。
  • 两者都假设 X 和 Y 之间存在线性关系。
  • 两者都可以用于经典的假设检验,每个都依赖于相同的基础分布(t)并产生相同的p值。

事实上,双变量 OLS 回归中获得的流行 R 平方实际上就是皮尔逊相关系数 ( r ) 的平方。

那么相关性和双变量回归,有什么区别呢?

最大的区别在于我们如何解释每次分析产生的关键数量。我们从相关性分析中获得的相关系数 ( r ) 是一个标准化数字,介于 -1 到 +1 之间(其中 -1 表示完全负线性相关,而 +1 表示完全正线性相关),无论我们分析的变量是什么

另一方面,回归会产生一个 beta 系数 ( b ),它可以是任意数字,告诉我们当 X 增加一个单位时 Y 的平均变化。换句话说,b是以我们正在研究的特定 Y 变量为单位的。因此,要真正理解b,我们确实需要知道 X 和 Y 是什么以及如何测量它们的细节

两者之间存在着更重要的概念差异

  • ***r***是关于观测值围绕拟合线的聚集紧密程度,无论该线有多陡峭。
  • *b*表示拟合线的陡峭程度,无论观测值围绕该线的聚集程度如何。

r实际上关心的是 X 的较高值往往(线性)与 Y 的较高值(或较低值)对应的一致性。而b实际上关心的是,在 X 增加的情况下,Y 预计平均会发生多大变化。

围绕斜线的观测值的聚集与斜线本身并不相同

在这里插入图片描述

图表顶部的(绿色)点表示 X 和 Y 之间的关系。r值为0.70。此关系的 b 值也为 0.70。因此,存在相当强的正相关性,且“效应”为 0.70,这意味着当 X 增加 1 时,我们预计 Y(平均)将增加 0.70。此效应由穿过数据点的(红色)拟合线表示。

但现在看看下半部分的(蓝色)点。它们看起来相当混乱——它们看起来不像图表上半部分那样整齐地聚集在(橙色)拟合线周围。相对于上图,它们在拟合线周围分散得很开,这表明从 X 的一个值到 X 的较高值对应 Y 的较低值的情况相对较多*,*反之亦然。因此,我们的相关性(r)较低,现在只有 0.61,而上图为 0.70。

但现在请注意底部斜率的相对陡峭程度。平均而言,增加 X 的值会导致 Y 的预期值发生相当大的变化。因此,我们看到一个非常大的斜率: b =4.03。这意味着,X 每增加一个单位,我们平均会看到 Y 增加 4.03。这比我们在顶部看到的**b =.70 效应要陡峭得多,但底部的相关性 ( r ) 较弱。

再次强调,数据点在斜率周围的聚集程度与斜率本身并不是一回事。

举例: 现在是夏天,天气很热;你不喜欢你所在城市的高温,所以你决定去山上。幸运的是,你到达山顶,测量温度,你发现它比你所在城市的温度低。你会有点疑惑*(因为你对气温的下降不理解)*,于是决定去一座更高的山,发现那里的气温甚至比前一座山上的还要低。

你尝试不同高度的山脉,测量温度并绘制图表;你会发现,随着山的高度增加,温度降低,你可以看到一个线性趋势。这是什么意思?这意味着温度与高度有关;这并不意味着山的高度导致了温度的下降*(如果你用热气球到达同一高度、同一纬度,你会测量出什么温度?)*

相关性和回归分析不仅仅是对同一事物的不同表述方式。

补充

1.深入相关性这个概念,我们可以说,如果第一个变量的每一个值,都遵循一定的规律性对应于第二个变量的一个值,那么两个变量是相关的;因此,如果两个变量高度相关,路径将是线性的*(一条线)*,因为相关性描述了变量之间的线性关系。

也就是说,相关性表示的是变量之间的关系,而不是因果关系!如果自变量的值增加,而因变量的值也增加,但这并不意味着第一个变量导致了第二个变量值的增加!

2.回归分析是一种数学技术,用于分析一些数据,包括一个因变量和一个*(或多个)*自变量,目的是找到因变量和自变量之间的最终函数关系。

回归分析的目的是找到在因变量和自变量之间的一个估计值*(一个好的估计值!)*。从数学上讲,回归的目的是找到最适合数据的曲线。

当然,最适合数据的曲线可以是直线;但它也可以是任何曲线,这取决于它们之间是何种关系!

所以,我们要做的是计算相关系数,如果它的值接近1,我们可以在研究回归时得到一条直线;否则,我们必须尝试多项式回归*(或其他方法,比如指数回归或其他任何方法)*!

这篇关于【线性相关 vs 双变量回归】数据点在斜率周围的聚集程度与斜率本身并不是一回事。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091715

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源