【线性相关 vs 双变量回归】数据点在斜率周围的聚集程度与斜率本身并不是一回事。

本文主要是介绍【线性相关 vs 双变量回归】数据点在斜率周围的聚集程度与斜率本身并不是一回事。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关性分析(具体来说,皮尔逊成对相关性)和回归分析(具体来说,双变量最小二乘 (OLS) 回归)具有许多共同的特征:

  • 两者都定期应用于两个连续变量(我们称之为 X 和 Y)。
  • 通常向学生介绍这两种图表时使用的是同一类型的图表:散点图。
  • 二者从根本上讲都是关于 X 中的偏差(即相对于平均值的单个值)与 Y 中的偏差之间的关系。
  • 两者都假设 X 和 Y 之间存在线性关系。
  • 两者都可以用于经典的假设检验,每个都依赖于相同的基础分布(t)并产生相同的p值。

事实上,双变量 OLS 回归中获得的流行 R 平方实际上就是皮尔逊相关系数 ( r ) 的平方。

那么相关性和双变量回归,有什么区别呢?

最大的区别在于我们如何解释每次分析产生的关键数量。我们从相关性分析中获得的相关系数 ( r ) 是一个标准化数字,介于 -1 到 +1 之间(其中 -1 表示完全负线性相关,而 +1 表示完全正线性相关),无论我们分析的变量是什么

另一方面,回归会产生一个 beta 系数 ( b ),它可以是任意数字,告诉我们当 X 增加一个单位时 Y 的平均变化。换句话说,b是以我们正在研究的特定 Y 变量为单位的。因此,要真正理解b,我们确实需要知道 X 和 Y 是什么以及如何测量它们的细节

两者之间存在着更重要的概念差异

  • ***r***是关于观测值围绕拟合线的聚集紧密程度,无论该线有多陡峭。
  • *b*表示拟合线的陡峭程度,无论观测值围绕该线的聚集程度如何。

r实际上关心的是 X 的较高值往往(线性)与 Y 的较高值(或较低值)对应的一致性。而b实际上关心的是,在 X 增加的情况下,Y 预计平均会发生多大变化。

围绕斜线的观测值的聚集与斜线本身并不相同

在这里插入图片描述

图表顶部的(绿色)点表示 X 和 Y 之间的关系。r值为0.70。此关系的 b 值也为 0.70。因此,存在相当强的正相关性,且“效应”为 0.70,这意味着当 X 增加 1 时,我们预计 Y(平均)将增加 0.70。此效应由穿过数据点的(红色)拟合线表示。

但现在看看下半部分的(蓝色)点。它们看起来相当混乱——它们看起来不像图表上半部分那样整齐地聚集在(橙色)拟合线周围。相对于上图,它们在拟合线周围分散得很开,这表明从 X 的一个值到 X 的较高值对应 Y 的较低值的情况相对较多*,*反之亦然。因此,我们的相关性(r)较低,现在只有 0.61,而上图为 0.70。

但现在请注意底部斜率的相对陡峭程度。平均而言,增加 X 的值会导致 Y 的预期值发生相当大的变化。因此,我们看到一个非常大的斜率: b =4.03。这意味着,X 每增加一个单位,我们平均会看到 Y 增加 4.03。这比我们在顶部看到的**b =.70 效应要陡峭得多,但底部的相关性 ( r ) 较弱。

再次强调,数据点在斜率周围的聚集程度与斜率本身并不是一回事。

举例: 现在是夏天,天气很热;你不喜欢你所在城市的高温,所以你决定去山上。幸运的是,你到达山顶,测量温度,你发现它比你所在城市的温度低。你会有点疑惑*(因为你对气温的下降不理解)*,于是决定去一座更高的山,发现那里的气温甚至比前一座山上的还要低。

你尝试不同高度的山脉,测量温度并绘制图表;你会发现,随着山的高度增加,温度降低,你可以看到一个线性趋势。这是什么意思?这意味着温度与高度有关;这并不意味着山的高度导致了温度的下降*(如果你用热气球到达同一高度、同一纬度,你会测量出什么温度?)*

相关性和回归分析不仅仅是对同一事物的不同表述方式。

补充

1.深入相关性这个概念,我们可以说,如果第一个变量的每一个值,都遵循一定的规律性对应于第二个变量的一个值,那么两个变量是相关的;因此,如果两个变量高度相关,路径将是线性的*(一条线)*,因为相关性描述了变量之间的线性关系。

也就是说,相关性表示的是变量之间的关系,而不是因果关系!如果自变量的值增加,而因变量的值也增加,但这并不意味着第一个变量导致了第二个变量值的增加!

2.回归分析是一种数学技术,用于分析一些数据,包括一个因变量和一个*(或多个)*自变量,目的是找到因变量和自变量之间的最终函数关系。

回归分析的目的是找到在因变量和自变量之间的一个估计值*(一个好的估计值!)*。从数学上讲,回归的目的是找到最适合数据的曲线。

当然,最适合数据的曲线可以是直线;但它也可以是任何曲线,这取决于它们之间是何种关系!

所以,我们要做的是计算相关系数,如果它的值接近1,我们可以在研究回归时得到一条直线;否则,我们必须尝试多项式回归*(或其他方法,比如指数回归或其他任何方法)*!

这篇关于【线性相关 vs 双变量回归】数据点在斜率周围的聚集程度与斜率本身并不是一回事。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091715

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I