算法解决收益最大化的问题,比如一个楼房有三种建筑方案

2024-08-20 22:44

本文主要是介绍算法解决收益最大化的问题,比如一个楼房有三种建筑方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。
市场调研后发现有市场接受度会分高低
1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万
2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万
3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万
概率p为50%,收益和风险各50%

选择哪个方案,才是利益最大化并且风险最小化?

要解决这个收益最大化问题,同时最小化风险,可以使用期望值方差相结合的方法进行决策分析。这种方法既考虑了潜在收益,也考虑了风险,即收益的不确定性。

具体来说,可以通过计算每种方案的期望收益和收益方差来决定应该选择哪个方案:

  1. 期望收益:用来衡量平均情况下每个方案的收益情况。期望值越高,表示该方案平均收益越高。
  2. 收益方差:用来衡量收益的波动性。方差越大,表示该方案的风险越高。

下面是具体步骤:

1. 计算每种方案的期望收益

期望收益 = 市场接受度高的收益 * 市场接受度高的概率 + 市场接受度低的收益 * 市场接受度低的概率。

设市场接受度高的概率为 ( p ),市场接受度低的概率为 ( 1-p )。

  • 大型方案:

    • 期望收益 ( E_1 = 2000p - 900(1-p) = 2900p - 900 )
  • 中型方案:

    • 期望收益 ( E_2 = 1400p + 500(1-p) = 900p + 500 )
  • 小型方案:

    • 期望收益 ( E_3 = 800p + 700(1-p) = 100p + 700 )

2. 计算每种方案的收益方差

方差可以衡量收益的波动性,公式如下:
[ \text{方差} = p \times (\text{市场接受度高的收益} - \text{期望收益})^2 + (1-p) \times (\text{市场接受度低的收益} - \text{期望收益})^2 ]

3. 根据期望收益和方差做出决策

  • 如果你更关注平均收益,选择期望收益最高的方案。
  • 如果你更关注风险,则可以选择期望收益较高且方差较小的方案,或者根据一定的风险偏好选择方案。

根据提供的信息,市场接受度高和低的概率 ( p ) 均为 50%。你希望在收益和风险之间做出均衡的选择,这意味着你需要考虑每个方案的期望收益和方差,然后做出一个基于这两者的综合决策。

1. 计算每种方案的期望收益

使用公式:
[ E = \text{高市场接受度收益} \times p + \text{低市场接受度收益} \times (1-p) ]

对每种方案计算期望收益:

  • 大型方案
    [
    E_1 = 2000 \times 0.5 + (-900) \times 0.5 = 1000 - 450 = 550 \ \text{万元}
    ]

  • 中型方案
    [
    E_2 = 1400 \times 0.5 + 500 \times 0.5 = 700 + 250 = 950 \ \text{万元}
    ]

  • 小型方案
    [
    E_3 = 800 \times 0.5 + 700 \times 0.5 = 400 + 350 = 750 \ \text{万元}
    ]

2. 计算每种方案的收益方差

方差计算公式为:
[ \text{方差} = p \times (\text{高市场接受度收益} - \text{期望收益})^2 + (1-p) \times (\text{低市场接受度收益} - \text{期望收益})^2 ]

对每种方案计算方差:

  • 大型方案
    [
    \text{方差}_1 = 0.5 \times (2000 - 550)^2 + 0.5 \times (-900 - 550)^2
    ]
    [
    \text{方差}_1 = 0.5 \times 2102500 + 0.5 \times 2102500 = 2102500 \ \text{万元}^2
    ]

  • 中型方案
    [
    \text{方差}_2 = 0.5 \times (1400 - 950)^2 + 0.5 \times (500 - 950)^2
    ]
    [
    \text{方差}_2 = 0.5 \times 202500 + 0.5 \times 202500 = 202500 \ \text{万元}^2
    ]

  • 小型方案
    [
    \text{方差}_3 = 0.5 \times (800 - 750)^2 + 0.5 \times (700 - 750)^2
    ]
    [
    \text{方差}_3 = 0.5 \times 2500 + 0.5 \times 2500 = 2500 \ \text{万元}^2
    ]

3. 综合收益和风险选择方案

为了综合收益和风险,可以使用一个加权函数来计算总得分,比如:
[ \text{得分} = \text{期望收益} - k \times \text{方差} ]
这里 ( k ) 是一个权重因子,代表你对风险的容忍度。在此我们将收益和方差各权重50%(即 ( k = 1 )),计算得分:

  • 大型方案
    [
    \text{得分}_1 = 550 - 1 \times 2102500 = -2101950
    ]

  • 中型方案
    [
    \text{得分}_2 = 950 - 1 \times 202500 = -201550
    ]

  • 小型方案
    [
    \text{得分}_3 = 750 - 1 \times 2500 = -1750
    ]

结论:

在考虑了收益和风险后的综合得分中,小型方案(6层30个单元)的得分最高(得分为 -1750),表明它是收益较高且风险最低的方案。因此,小型方案是最优选择。

这篇关于算法解决收益最大化的问题,比如一个楼房有三种建筑方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091381

相关文章

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决