算法解决收益最大化的问题,比如一个楼房有三种建筑方案

2024-08-20 22:44

本文主要是介绍算法解决收益最大化的问题,比如一个楼房有三种建筑方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。
市场调研后发现有市场接受度会分高低
1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万
2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万
3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万
概率p为50%,收益和风险各50%

选择哪个方案,才是利益最大化并且风险最小化?

要解决这个收益最大化问题,同时最小化风险,可以使用期望值方差相结合的方法进行决策分析。这种方法既考虑了潜在收益,也考虑了风险,即收益的不确定性。

具体来说,可以通过计算每种方案的期望收益和收益方差来决定应该选择哪个方案:

  1. 期望收益:用来衡量平均情况下每个方案的收益情况。期望值越高,表示该方案平均收益越高。
  2. 收益方差:用来衡量收益的波动性。方差越大,表示该方案的风险越高。

下面是具体步骤:

1. 计算每种方案的期望收益

期望收益 = 市场接受度高的收益 * 市场接受度高的概率 + 市场接受度低的收益 * 市场接受度低的概率。

设市场接受度高的概率为 ( p ),市场接受度低的概率为 ( 1-p )。

  • 大型方案:

    • 期望收益 ( E_1 = 2000p - 900(1-p) = 2900p - 900 )
  • 中型方案:

    • 期望收益 ( E_2 = 1400p + 500(1-p) = 900p + 500 )
  • 小型方案:

    • 期望收益 ( E_3 = 800p + 700(1-p) = 100p + 700 )

2. 计算每种方案的收益方差

方差可以衡量收益的波动性,公式如下:
[ \text{方差} = p \times (\text{市场接受度高的收益} - \text{期望收益})^2 + (1-p) \times (\text{市场接受度低的收益} - \text{期望收益})^2 ]

3. 根据期望收益和方差做出决策

  • 如果你更关注平均收益,选择期望收益最高的方案。
  • 如果你更关注风险,则可以选择期望收益较高且方差较小的方案,或者根据一定的风险偏好选择方案。

根据提供的信息,市场接受度高和低的概率 ( p ) 均为 50%。你希望在收益和风险之间做出均衡的选择,这意味着你需要考虑每个方案的期望收益和方差,然后做出一个基于这两者的综合决策。

1. 计算每种方案的期望收益

使用公式:
[ E = \text{高市场接受度收益} \times p + \text{低市场接受度收益} \times (1-p) ]

对每种方案计算期望收益:

  • 大型方案
    [
    E_1 = 2000 \times 0.5 + (-900) \times 0.5 = 1000 - 450 = 550 \ \text{万元}
    ]

  • 中型方案
    [
    E_2 = 1400 \times 0.5 + 500 \times 0.5 = 700 + 250 = 950 \ \text{万元}
    ]

  • 小型方案
    [
    E_3 = 800 \times 0.5 + 700 \times 0.5 = 400 + 350 = 750 \ \text{万元}
    ]

2. 计算每种方案的收益方差

方差计算公式为:
[ \text{方差} = p \times (\text{高市场接受度收益} - \text{期望收益})^2 + (1-p) \times (\text{低市场接受度收益} - \text{期望收益})^2 ]

对每种方案计算方差:

  • 大型方案
    [
    \text{方差}_1 = 0.5 \times (2000 - 550)^2 + 0.5 \times (-900 - 550)^2
    ]
    [
    \text{方差}_1 = 0.5 \times 2102500 + 0.5 \times 2102500 = 2102500 \ \text{万元}^2
    ]

  • 中型方案
    [
    \text{方差}_2 = 0.5 \times (1400 - 950)^2 + 0.5 \times (500 - 950)^2
    ]
    [
    \text{方差}_2 = 0.5 \times 202500 + 0.5 \times 202500 = 202500 \ \text{万元}^2
    ]

  • 小型方案
    [
    \text{方差}_3 = 0.5 \times (800 - 750)^2 + 0.5 \times (700 - 750)^2
    ]
    [
    \text{方差}_3 = 0.5 \times 2500 + 0.5 \times 2500 = 2500 \ \text{万元}^2
    ]

3. 综合收益和风险选择方案

为了综合收益和风险,可以使用一个加权函数来计算总得分,比如:
[ \text{得分} = \text{期望收益} - k \times \text{方差} ]
这里 ( k ) 是一个权重因子,代表你对风险的容忍度。在此我们将收益和方差各权重50%(即 ( k = 1 )),计算得分:

  • 大型方案
    [
    \text{得分}_1 = 550 - 1 \times 2102500 = -2101950
    ]

  • 中型方案
    [
    \text{得分}_2 = 950 - 1 \times 202500 = -201550
    ]

  • 小型方案
    [
    \text{得分}_3 = 750 - 1 \times 2500 = -1750
    ]

结论:

在考虑了收益和风险后的综合得分中,小型方案(6层30个单元)的得分最高(得分为 -1750),表明它是收益较高且风险最低的方案。因此,小型方案是最优选择。

这篇关于算法解决收益最大化的问题,比如一个楼房有三种建筑方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091381

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是