腾讯社交广告高校算法大赛——总结

2024-08-20 21:32

本文主要是介绍腾讯社交广告高校算法大赛——总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转https://blog.csdn.net/ben3ben/article/details/74838338

腾讯社交广告高校算法大赛——总结


题目描述

http://algo.tpai.qq.com/home/home/index.html


成绩

决赛第7名


赛题分析

  比赛中,我们比较关心的一个问题在于:数据线上线下分布不一致:1、某些app和用户的记录比较少;2、数据的时效性要求较高。这对于特征工程会是一个比较大的要求,在比赛中有许多的特征会使得线上的成绩下降,比如各种差分的特征。


特征工程

特征的提取主要有以下几个方面:

  1. 基础特征:计数特征、转化率、比例特征等各种基本的特征;
  2. 线上的特征:基于当天数据统计的用户行为、app行为的特征;
  3. 用户行为挖掘特征:word2vec计算用户行为与历史行为的关联;

特征提取方式有以下几个方面考虑:

  1. 基于cv统计、贝叶斯平滑等方法,能够很好的修正线上线下的特征分布不一致的问题;
  2. 特征提取主要有基于全局的数据统计以及滑窗的历史统计。 
    • 基于全集的数据统计生成的特征:是决赛中主要的特征提取方式,效果比较平稳,而且信息量比较多,但容易会有信息泄露的问题需要通过cv统计来避免,而且难以反映时间变化的信息。
    • 基于滑窗的生成特征:能反映时序上的信息,不会有信息泄露的问题。但是生成的特征数量多,线上线下的分布差异比较大,特征工程方面的工作量比较大。

因此,比赛中我选择了两种生成特征的方式来产生不同的模型进行融合。


特征选择

  • 在初赛阶段,主要有以下三种方式来筛选特征:1、删除线上线下均值差异30%以上的特征;2、通过xgboost计算的特征重要性,删除重要性较低的特征;3、通过wrapper的方式选择特征。通过以上方式能够保证线上线下的特征稳定,但这工作在决赛数据量大的情况下会比较耗时。
  • 在决赛阶段,每加入一部分特征,通过线上的成绩反馈来选择特征的去留。

模型方法

  比赛中主要使用stacking 的方式,其中一个模块的示意图如下: 
这里写图片描述

  如图所示,模块中使用cv的方法,把数据分成5份来进行训练和预测,这样模型的效果会比单模型的要好些(相当于投票的一种策略)。此外模块中stack3层,每一层使用原有的特征和预测值作为下一个模型的输入,增强模块的精度。模型中使用xgboost和lightgbm。 
  这种模型的缺点在于,效率是单模型的十几倍,因此需要一种策略来保证效率。这里我使用分而治之的思想,每一次训练使用上一个模块的预测值和当前新提取的特征,作为下一个模块的输入进行训练,不断迭代。这样相当于把所有的特征分成很多部分分开训练,并且在决赛中通过线上成绩反馈来选择特征的去留。最终模型的流水线如下: 
  这里写图片描述
  Component就是模型的一个模块(cv5份和stack3层的模块),每次提取新的特征则加入到新的component中训练。这里流水线中使用了15个模块。 
  实验中,随着加入的特征越多,模型效果变得更好。模型的效果如下: 
  这里写图片描述


模型融合

主要有两种融合的方式:

  1. 加权融合:当融合的模型效果差异大时,根据线上的成绩人工设定融合的权重;
  2. logistic平均:当融合的模型效果差异小时,采用以下公式进行融合:p=f(if1(pi)n)p=f(∑if−1(pi)n)

除了stacking的模型,同时也考虑全集和滑窗特征上的单模型效果,还有每个component成绩,进行融合: 
这里写图片描述


赛后总结

  个人感觉在模型的stack方面,已经做到了很好的程度,实验的结果表明比单模型的效果要好且鲁棒性更高。但是决赛后期尝试使用ffm算法,但是效果一直不理想,所以只是稍微的加进去原来的模型中进行融合。

这篇关于腾讯社交广告高校算法大赛——总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091226

相关文章

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ