【排序算法】八大排序(上)(c语言实现)(附源码)

2024-08-20 20:20

本文主要是介绍【排序算法】八大排序(上)(c语言实现)(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌟🌟作者主页:ephemerals__

🌟🌟所属专栏:算法

目录

前言

写一串测试数据

交换两元素的函数

一、冒泡排序

二、选择排序

三、插入排序

四、希尔排序

程序全部代码

总结


前言

        排序算法是计算机科学领域的基石之一,它不仅在算法的理论研究中占据重要地位,更是实际开发当中解决数据组织,检索,处理等问题的关键工具。现如今数据日益增长,理解并掌握这些排序算法的原理、特点及其适用场景,对于提升程序效率、优化用户体验至关重要。

        八大排序算是排序算法当中知名度较高的了,它们不仅涵盖了简单直观的排序方法,以便初学者学习理解;也包含了高效复杂的排序策略,广泛应用于实际开发。

        本篇文章,作者主要介绍并实现八大排序算法的其中四种:冒泡排序、选择排序、插入排序、希尔排序

正文开始

写一串测试数据

        首先,我们写一个乱序的数组,便于后续排序测试:

#include <stdio.h>int main()
{int arr[] = { 5,9,4,0,2,7,8,0,0,1,4,4,1,3,5,6,3,2,9,7 };int sz = sizeof(arr) / sizeof(arr[0]);//计算出数组元素个数for (int i = 0; i < sz; i++)//打印数组{printf("%d ", arr[i]);}return 0;
}

交换两元素的函数

        在这里,我们将交换两个元素的步骤封装成一个函数,便于后续多次调用。

void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}

一、冒泡排序

        冒泡排序是一种简单的排序算法,易于初学者理解和学习。它的核心思想就是重复遍历数组,比较相邻两个元素,如果它们的顺序错误,则交换之。直到数组中没有顺序错误的情况,则排序已经完成

        它的具体步骤描述如下:

1.遍历数组,比较所有的相邻元素,如果前者大于后者(默认升序),则交换它们

2.当遍历到数组最后一对相邻元素后,数组中最后一个元素会是最大的数。此时一趟冒泡排序完成

3.重新遍历数组比较相邻元素(最后一个元素除外,因为已经是最大的了)。一趟结束后,数组中第二大的元素将位于倒数第二个位置

4.重复进行上述步骤(已经就位的元素除外),直到所有元素均不需要再交换

动图表示:

接下来,我们尝试实现冒泡排序:

void BubbleSort(int* arr, int n)
{//外层循环控制排序的趟数for (int i = 0; i < n - 1; i++)//每一趟排序使一个元素就位,n个元素的数组需要n-1趟排序(最后一趟会使前两个元素就位){//内层循环控制需要比较的相邻元素for (int j = 0; j < n - 1 - i; j++)//每一趟结束后,需要比较的元素便减少一个,所以要减去i{if (arr[j] > arr[j + 1])//若前者大于后者,说明顺序错误,需要交换{Swap(&arr[j], &arr[j + 1]);//交换两元素}}}
}

不难发现,如果没有到达排序的趟数,但是数组已经有序,程序就会继续进行不必要的元素比较,运行效率降低。基于这一点,我们可以做出如下改进:

void BubbleSort(int* arr, int n)
{//外层循环控制排序的趟数for (int i = 0; i < n - 1; i++)//每一趟排序使一个元素就位,n个元素的数组需要n-1趟排序(最后一趟会使前两个元素就位){int flag = 1;//假设数组已经有序//内层循环控制需要比较的相邻元素for (int j = 0; j < n - 1 - i; j++)//每一趟结束后,需要比较的元素便减少一个,所以要减去i{if (arr[j] > arr[j + 1])//若前者大于后者,说明顺序错误,需要交换{Swap(&arr[j], &arr[j + 1]);//交换两元素flag = 0;//发生了交换,说明数组并非有序}}if (flag == 1)//如果数组已经有序,则不需要排序,直接退出循环{break;}}
}

接下来,我们对测试数组进行排序:

int main()
{int arr[] = { 5,9,4,0,2,7,8,0,0,1,4,4,1,3,5,6,3,2,9,7 };int sz = sizeof(arr) / sizeof(arr[0]);BubbleSort(arr, sz);//冒泡排序for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}

运行结果:

可以看到,排序成功了。

冒泡排序的特性总结

空间复杂度:O(1)

时间复杂度:O(N^2)

稳定性(相同值的元素排序前后的相对次序是否保持不变):稳定

无论数组是否有序,都有大量元素被重复地进行比较和交换,运行效率不高

二、选择排序

        选择排序是一种比较接近人类思想的排序算法,它的核心思想非常简单:从数组中寻找最小(最大)元素,将其放于数组第一个位置(最后一个位置)处,然后再从剩余的元素中寻找最小(最大)值,放到数组第二个位置(倒数第二个位置)处......

        具体步骤如下:

1.首先遍历数组,寻找到数组中最小的元素,将其与数组的首元素进行交换

2.开始遍历数组的剩下部分,寻找最小值,与该部分的首元素进行交换。

3.重复第二步,直到“该部分”只有一个元素为止,说明数组已经排序好

动图表示:

接下来,我们尝试代码实现选择排序:

void SelectSort(int* arr, int n)
{//外层循环控制遍历次数以及遍历的起始位置for (int i = 0; i < n; i++){int mini = i;//假设最小值位于遍历部分的首元素处//内层循环,寻找最小值for (int j = mini + 1; j < n; j++){if (arr[j] < arr[mini])//将更小的元素标记为mini{mini = j;}}Swap(&arr[i], &arr[mini]);//将最小值与遍历部分的首元素交换}
}

运行测试:

选择排序特性总结

空间复杂度:O(1)

时间复杂度:O(N^2)

稳定性:不稳定

使用寻找最值进行交换的方式,虽然在效率上相比冒泡排序有所提升,但是依然不是很实用。

三、插入排序

        插入排序是一种适用于对少量数据进行排序的算法,它的效率要略高于冒泡排序和选择排序。就像玩扑克牌一样,它的核心思想是:将一个个数据不断插入到已经有序的数组的合适位置,从而使整个数组有序。

        具体步骤如下:

1.将数组首元素视为有序。

2.将有序数组的下一个元素取出,然后开始对该元素之前的部分进行遍历,找到合适位置并插入

3.将这部分有序数组看成整体,重复第二步,直到将最后一个元素调整完成

动图表示:

代码实现如下:

void InsertSort(int* arr, int n)
{//外层循环确定遍历次数for (int i = 0; i < n - 1; i++){int end = i;//记录有序数组的末尾位置int tmp = arr[end + 1];//保存需要插入的元素tmp//内层循环控制对有序数组的遍历while (end >= 0)//当end小于0时,一次遍历结束{if (arr[end] > tmp){arr[end + 1] = arr[end];//该值后移一位,留空缺end--;//继续向前走}else//当tmp值比有序数组中某元素小或相等时,说明tmp应该插入在该元素之后,终止遍历{break;}}arr[end + 1] = tmp;//插入到该元素之后的位置}
}

代入测试:

插入排序性能总结

空间复杂度:O(1)

时间复杂度:O(N^2)

稳定性:稳定

虽然在时间复杂度上没有什么变化,但是相比冒泡排序和选择排序,性能有所提升。由于它是按照顺序进行扫描并且插入的,所以相同值元素的相对位置不会改变,是一种稳定的排序算法,是排序少量数据的首选。不过面对的数据量庞大时,依然不够看。

四、希尔排序

        希尔排序又称为缩小增量排序,是一种效率很高的排序算法,算是插入排序的升级版。它的核心思想也比较简单:首先对数组进行预排序,使其接近有序,然后进行插入排序

        这里介绍一下排序的思路:

        首先选定一个增量gap(这里我们使gap=数组元素n/3),将数组中相差gap个位置的元素视为一个子序列,然后分别对这些子序列进行插入排序。当所有子序列排序结束之后,使gap的值逐渐减小(再除以3),然后再将相差gap个位置的元素构成的子序列进行插入排序......直到gap为1时,构成的序列就是数组本身,对其进行一次插入排序即可。

        当然,这里的增量gap并不是只有n/3这一种取法。他还有很多种取法,例如n/2、n/4等。但要注意:变化的gap值应尽量满足没有除1以外的公因子,并且最后一次gap的值是1

接下来,我们尝试实现希尔排序:

void ShellSort(int* arr, int n)
{int gap = n;//定义增量gap//循环控制预排序的次数,以及进行最后一次插入排序while (gap > 1){gap = gap / 3 + 1;//首先调整gap值//进行插入排序//注意细节处理,是对相隔gap的元素进行排序for (int i = 0; i < n - gap; i++)//一次循环结束后,i++就走向了下一个子序列的起始位置{int end = i;//记录有序部分的末尾位置int tmp = arr[end + gap];//end+gap位置的元素视为子序列中的下一个元素while (end >= 0){if (arr[end] > tmp){arr[end + gap] = arr[end];end -= gap;//一次向前走gap个位置}else{break;}}arr[end + gap] = tmp;}}
}

从代码角度看,它相比插入排序又多了一层循环,效率怎么会高于插入排序呢?实际上,有了预排序之后,最后一次插入排序所节省的时间要远远大于预排序消耗的时间

代入数据测试:

希尔排序性能总结

空间复杂度:O(1)

时间复杂度:O(N^1.3)(计算过程相对复杂)

稳定性:不稳定

相比冒泡排序,选择排序和插入排序,希尔排序的时间复杂度较低,运行效率更高,更适用于大规模数据的排序。但是它的性能不稳定,易受数据和增量选择的影响。

程序全部代码

程序全部代码如下:

#include <stdio.h>
#include <stdlib.h>//交换函数
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//冒泡排序
void BubbleSort(int* arr, int n)
{//外层循环控制排序的趟数for (int i = 0; i < n - 1; i++)//每一趟排序使一个元素就位,n个元素的数组需要n-1趟排序(最后一趟会使前两个元素就位){int flag = 1;//假设数组已经有序//内层循环控制需要比较的相邻元素for (int j = 0; j < n - 1 - i; j++)//每一趟结束后,需要比较的元素便减少一个,所以要减去i{if (arr[j] > arr[j + 1])//若前者大于后者,说明顺序错误,需要交换{Swap(&arr[j], &arr[j + 1]);//交换两元素flag = 0;//发生了交换,说明数组并非有序}}if (flag == 1)//如果数组已经有序,则不需要排序,直接退出循环{break;}}
}//选择排序
void SelectSort(int* arr, int n)
{//外层循环控制遍历次数以及遍历的起始位置for (int i = 0; i < n; i++){int mini = i;//假设最小值位于遍历部分的首元素处//内层循环,寻找最小值for (int j = mini + 1; j < n; j++){if (arr[j] < arr[mini])//将更小的元素标记为mini{mini = j;}}Swap(&arr[i], &arr[mini]);//将最小值与遍历部分的首元素交换}
}//插入排序
void InsertSort(int* arr, int n)
{//外层循环确定遍历次数for (int i = 0; i < n - 1; i++){int end = i;//记录有序数组的末尾位置int tmp = arr[end + 1];//保存需要插入的元素tmp//内层循环控制对有序数组的遍历while (end >= 0)//当end小于0时,一次遍历结束{if (arr[end] > tmp){arr[end + 1] = arr[end];//该值后移一位,留空缺end--;//继续向前走}else//当tmp值比有序数组中某元素小或相等时,说明tmp应该插入在该元素之后,终止遍历{break;}}arr[end + 1] = tmp;//插入到该元素之后的位置}
}//希尔排序
void ShellSort(int* arr, int n)
{int gap = n;//定义增量gap//循环控制预排序的次数,以及进行最后一次插入排序while (gap > 1){gap = gap / 3 + 1;//首先调整gap值//进行插入排序//注意细节处理,是对相隔gap的元素进行排序for (int i = 0; i < n - gap; i++)//一次循环结束后,i++就走向了下一个子序列的起始位置{int end = i;//记录有序部分的末尾位置int tmp = arr[end + gap];//end+gap位置的元素视为子序列中的下一个元素while (end >= 0){if (arr[end] > tmp){arr[end + gap] = arr[end];end -= gap;//一次向前走gap个位置}else{break;}}arr[end + gap] = tmp;}}
}int main()
{int arr[] = { 5,9,4,0,2,7,8,0,0,1,4,4,1,3,5,6,3,2,9,7 };int sz = sizeof(arr) / sizeof(arr[0]);//BubbleSort(arr, sz);//SelectSort(arr, sz);//InsertSort(arr, sz);ShellSort(arr, sz);for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}

总结

        今天,我们学习了八大排序的其中四种:冒泡排序,选择排序,插入排序和希尔排序。在理解这些排序思想和实现它们的过程当中,我们感受到了算法之美,也加强了分析问题、解决问题的能力。之后博主会和大家分享剩下的几种排序算法。如果你觉得博主讲的还不错,就请留下一个小小的赞在走哦,感谢大家的支持❤❤❤

这篇关于【排序算法】八大排序(上)(c语言实现)(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091087

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too