【数据分析】数据的离中趋势之二 - 方差和标准差、离散系数

2024-08-20 18:28

本文主要是介绍【数据分析】数据的离中趋势之二 - 方差和标准差、离散系数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

四、方差和标准差

  • 方差是数据组中各数据值与其算术平均数离差平方的算术平均数。
  • 方差的平方根就是标准差
  • 标准差的本质与平均差基本相同,平均差取绝对值的方法消除离差正负号后用算数平均的方法求平均离差。标准差用平方的方法消除离差的正负号后用离差平方求平均数再开根号。
  • 标准差的性质:
    • 标准差度量了偏离平均数的大小
    • 标准差是一类平均偏差
    • 数列大多数项距离平均数少于1个标准差范围内,极少数项距离平均数 2个 或者 3个标准差以上。

两组工人日产量标准差计算如下:

甲   组乙   组
日产量离差离差平方日产量离差离差平方
xx - 平均数(x - 平均数) 的平方xx - 平均数(x - 平均数) 的平方
4-121447-981
7-98112-416
11-52514-24
14-2414-24
14-2415-11
16001711
17111711
248641939
2598120416
281214425981
合计---548合计---214
  • 甲组方差 = 甲组离差平方的平均值 = 548 / 10 = 54.8
  • 甲组标准差 = 7.40 (件)
  • 乙组方差 = 乙组离差平方的平均值 = 214 / 10 = 21.4
  • 乙组标准差 = 4.63(件)
  • 在甲乙两组工人平均日产量相等(都是16件)的情况下,甲组的标准差(7.40 件)大于乙组的标准差(4.63 件),因而其平均数的代表性比乙组小。

五、离散系数

  • 极差、平均差、标准差都是对数据的离中趋势进行绝对或平均差异的测定。
  • 在通常情况下,它们都带有计量单位,而月其离中趋势大小与变量平均水平的高低有关。
  • 因此,要比较数据平均水平不同的两组数据的离中程度的大小,就有必要计算它们的相对离中程度指标,即离散系数。
  • 常用的离散系数指标是标准差系数。

标准差系数是将一组数据的标准差与其算数平均数对比的结果,以测定其相对离中程度。

例:甲乙两班中,哪个班的平均成绩更具有代表性?

甲班的平均成绩为 70 分,标准差为 9.0 分,乙班的成绩分组如下:

成绩分组学生人数
60以下2
60 - 706
70 - 8025
80 - 9012
90 - 1005

以下分析乙班成绩:

按成绩分组

组中值(x)学生人数(f)xfx - 平均数(x - 平均数)的平方(x - 平均数)的平方 * 人数
60以下552110-22.4501.761003.52
60 - 70656390-12.4153.76922.56
70 - 8075251875-2.45.76144
80 - 90851210207.657.76693.12
90 - 10095547517.6309.761548.8
合计---503870------4312
  • 甲班的平均成绩为 70分,标准差为9.0分,标准差系数为 9.0 / 70 = 0.1286
  • 乙班的平均成绩为 3870 / 50 = 77.4 分
  • 乙班的标准差为 4312 / 50 的开根号 = 9.29 分

由于甲、乙两班成绩的平均值和标准差都不一样,无法使用标准差来比较哪个班的成绩波动大,因此必须使用离散系数来判断。从计算中可以看出:V乙<V甲,所以乙班的成绩波动小一些,则其班级的平均成绩更有代表性。

六、Python 计算 方差、标准差、离散系数

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import numpy as np# 创建 Dash 应用
app = dash.Dash(__name__)# 应用布局
app.layout = html.Div([html.H1('请输入数据'),dcc.Input(id='input-data', type='text', placeholder='输入数据,用逗号分隔'),html.Button('计算', id='compute-button', n_clicks=0),html.Div(id='output-container')
])# 回调函数,用于处理按钮点击事件
@app.callback(Output('output-container', 'children'),[Input('compute-button', 'n_clicks')],[dash.dependencies.State('input-data', 'value')]
)
def compute_var_std_mean(n_clicks, input_value):if n_clicks > 0:try:# 将输入字符串转换成数字列表data = list(map(float, input_value.split(',')))# 方差variance = np.var(data)# 标准差std_dev = np.std(data)# 均值mean = np.mean(data)# 离散系数coefficient_of_variation = std_dev / mean if mean != 0 else float('inf')# 显示结果output = [f'方差:{variance:.2f}'f'标准差:{std_dev:.2f}',f'离散系数:{coefficient_of_variation:.2f}']return '<br>'.join(output)except Exception as e:return str(e)if __name__ == '__main__':app.run_server(debug=True)

这篇关于【数据分析】数据的离中趋势之二 - 方差和标准差、离散系数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090841

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本