Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

2024-06-24 13:04

本文主要是介绍Python应用开发——30天学习Streamlit Python包进行APP的构建(9),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

st.area_chart

显示区域图。

这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。

如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。

Function signature[source]

st.area_chart(data=None, *, x=None, y=None, color=None, width=None, height=None, use_container_width=True)

Parameters

data (pandas.DataFrame, pandas.Styler, pyarrow.Table, numpy.ndarray, pyspark.sql.DataFrame, snowflake.snowpark.dataframe.DataFrame, snowflake.snowpark.table.Table, Iterable, or dict)

Data to be plotted.

x (str or None)

Column name to use for the x-axis. If None, uses the data index for the x-axis.

y (str, Sequence of str, or None)

Column name(s) to use for the y-axis. If a Sequence of strings, draws several series on the same chart by melting your wide-format table into a long-format table behind the scenes. If None, draws the data of all remaining columns as data series.

color (str, tuple, Sequence of str, Sequence of tuple, or None)

The color to use for different series in this chart.

For an area chart with just 1 series, this can be:

  • None, to use the default color.
  • A hex string like "#ffaa00" or "#ffaa0088".
  • An RGB or RGBA tuple with the red, green, blue, and alpha components specified as ints from 0 to 255 or floats from 0.0 to 1.0.

For an area chart with multiple series, where the dataframe is in long format (that is, y is None or just one column), this can be:

  • None, to use the default colors.

  • The name of a column in the dataset. Data points will be grouped into series of the same color based on the value of this column. In addition, if the values in this column match one of the color formats above (hex string or color tuple), then that color will be used.

    For example: if the dataset has 1000 rows, but this column only contains the values "adult", "child", and "baby", then those 1000 datapoints will be grouped into three series whose colors will be automatically selected from the default palette.

    But, if for the same 1000-row dataset, this column contained the values "#ffaa00", "#f0f", "#0000ff", then then those 1000 datapoints would still be grouped into 3 series, but their colors would be "#ffaa00", "#f0f", "#0000ff" this time around.

For an area chart with multiple series, where the dataframe is in wide format (that is, y is a Sequence of columns), this can be:

  • None, to use the default colors.
  • A list of string colors or color tuples to be used for each of the series in the chart. This list should have the same length as the number of y values (e.g. color=["#fd0", "#f0f", "#04f"] for three lines).

width (int or None)

Desired width of the chart expressed in pixels. If width is None (default), Streamlit sets the width of the chart to fit its contents according to the plotting library, up to the width of the parent container. If width is greater than the width of the parent container, Streamlit sets the chart width to match the width of the parent container.

height (int or None)

Desired height of the chart expressed in pixels. If height is None (default), Streamlit sets the height of the chart to fit its contents according to the plotting library.

use_container_width (bool)

Whether to override width with the width of the parent container. If use_container_width is False (default), Streamlit sets the chart's width according to width. If use_container_width is True, Streamlit sets the width of the chart to match the width of the parent container.

代码

import streamlit as st
import pandas as pd
import numpy as npchart_data = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])st.area_chart(chart_data)

这段代码使用了Streamlit库来创建一个简单的Web应用程序。首先导入了streamlit、pandas和numpy库。然后创建了一个包含20行3列随机数的DataFrame,并命名为chart_data,列名分别为"a"、"b"和"c"。最后使用Streamlit的area_chart函数将chart_data作为参数,创建了一个面积图展示在Web应用程序上。

您还可以为 x 和 y 选择不同的列,以及根据第三列动态设置颜色(假设您的数据帧是长格式): 

import streamlit as st
import pandas as pd
import numpy as npchart_data = pd.DataFrame({"col1": np.random.randn(20),"col2": np.random.randn(20),"col3": np.random.choice(["A", "B", "C"], 20),}
)st.area_chart(chart_data, x="col1", y="col2", color="col3")

这段代码使用了Streamlit库来创建一个简单的数据可视化应用。首先导入了需要的库,包括streamlit、pandas和numpy。然后创建了一个包含随机数据的DataFrame对象chart_data,其中包括了三列数据:col1、col2和col3。接下来使用Streamlit的area_chart函数将这些数据可视化为一个面积图,其中x轴为col1,y轴为col2,颜色由col3决定。最终,这段代码将会在Streamlit应用中展示一个面积图,显示出col1和col2之间的关系,并用不同的颜色表示col3的取值。

最后,如果您的数据帧是宽格式,您可以在 y 参数下对多列进行分组,以不同的颜色显示多个序列:

import streamlit as st
import pandas as pd
import numpy as npchart_data = pd.DataFrame(np.random.randn(20, 3), columns=["col1", "col2", "col3"])st.area_chart(chart_data, x="col1", y=["col2", "col3"], color=["#FF0000", "#0000FF"]  # Optional
)

 这段代码使用Streamlit库创建了一个面积图。首先,它导入了streamlit、pandas和numpy库。然后,它使用numpy生成了一个包含随机数据的DataFrame,并将其命名为chart_data。随后,使用st.area_chart()函数创建了一个面积图,其中x轴使用"col1"列的数据,y轴使用"col2"和"col3"列的数据,同时可以选择性地指定颜色参数来设置面积图的颜色。

element.add_rows

将一个数据帧连接到当前数据帧的底部。

Function signature[source]

element.add_rows(data=None, **kwargs)

Parameters

data (pandas.DataFrame, pandas.Styler, pyarrow.Table, numpy.ndarray, pyspark.sql.DataFrame, snowflake.snow

这篇关于Python应用开发——30天学习Streamlit Python包进行APP的构建(9)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090223

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函