笔记-python之celery使用详解

2024-06-24 11:12

本文主要是介绍笔记-python之celery使用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Celery是一个用于处理异步任务的Python库,它允许你将任务分发到多个worker进行处理。以下是Celery的使用详解:

  1. 安装Celery
    使用pip安装Celery:
pip install celery
  1. 创建Celery实例
    首先,需要创建一个Celery实例,指定broker(消息中间件)和backend(结果存储)。
from celery import Celeryapp = Celery('tasks', broker='pyamqp://guest@localhost//', backend='rpc://')
  1. 定义任务
    在模块中定义一个任务,使用@app.task装饰器将其标记为Celery任务。
@app.task
def add(x, y):return x + y
  1. 调用任务
    可以使用apply_asyncdelay方法调用任务。
# 使用apply_async调用任务
add.apply_async(args=(1, 2), queue='default')# 使用delay调用任务
result = add.delay(1, 2)
  1. 运行worker
    在命令行中运行以下命令启动worker:
celery -A your_module worker --loglevel=info
  1. 查看任务状态
    可以使用AsyncResult对象查看任务的状态。
result = add.delay(1, 2)
print(result.ready())  # 检查任务是否完成
print(result.get())    # 获取任务结果
  1. 配置多个worker和队列
    可以在Celery实例中配置多个worker和队列。
app = Celery('tasks', broker='pyamqp://guest@localhost//', backend='rpc://')
app.conf.update(worker_directories=['path/to/worker1', 'path/to/worker2'],task_queues=[Queue('default', Exchange('default'), routing_key='default'),Queue('high-priority', Exchange('high-priority'), routing_key='high-priority'),],task_default_queue='default',task_default_exchange='default',task_default_routing_key='default',
)
  1. 优先级和路由
    可以为任务设置优先级和路由键,以便将任务发送到不同的队列。
add.apply_async(args=(1, 2), priority=2, queue='high-priority', routing_key='high-priority')
  1. 结果后端
    可以使用结果后端存储任务的结果。支持多种后端,如Redis、数据库等。
app = Celery('tasks', broker='pyamqp://guest@localhost//', backend='redis://localhost:6379/0')
  1. 自定义序列化和压缩
    可以自定义序列化和压缩方法,以便在broker和worker之间传输数据。
app.conf.update(accept_content=['json'],result_serializer='json',task_serializer='json',compression='gzip',
)

这篇关于笔记-python之celery使用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089980

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部