【Flink metric】Flink指标系统的系统性知识:以便我们实现特性化数据的指标监控与分析

本文主要是介绍【Flink metric】Flink指标系统的系统性知识:以便我们实现特性化数据的指标监控与分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一. Registering metrics:向flink注册新自己的metrics
      • 1. 注册metrics
      • 2. Metric types:指标类型
        • 2.1. Counter
        • 2.2. Gauge
        • 2.3. Histogram(ing)
        • 4. Meter
    • 二. Scope:指标作用域
      • 1. User Scope
      • 2. System Scope ing
      • 3. User Variables
    • 三. Reporter ing
    • 四. System metrics ing
    • 五. REST API integration
    • 六. Dashboard integration

本文我们通过官网来整体了解下flink 指标系统的系统性支持

 

本文主要关注:

  • 如何注册自定义指标,如何进行更新指标数据
  • 指标定义的层级:即指标的scope
  • 简单介绍,指标如何报告给外部系统、有哪些系统指标
  • 指标如何通过REST API获取
  • 在flink UI上创建Dashboard的方法

 

Flink exposes a metric system that allows gathering and exposing metrics to external systems.

flink 暴露了一个指标系统,可以收集和暴露指标给外部系统。

一. Registering metrics:向flink注册新自己的metrics

1. 注册metrics

任何继承了RichFunction 的用户函数,都可以通过调用:getRuntimeContext().getMetricGroup() ,来访问flink的metric system。方法返回的MetricGroup可以用来创建和注册新的指标。

 

2. Metric types:指标类型

flink支持 Counters, Gauges, Histograms and Meters.等四种指标类型。

2.1. Counter

计数器 (Counter) 用于计数某个指标。

  • 可以使用 inc()/inc(long n)dec()/dec(long n) 方法来增加或减少当前值。
  • 可以通过在 MetricGroup 上调用 counter(String name) 来创建并注册一个计数器。
public class MyMapper extends RichMapFunction<String, String> {private transient Counter counter;@Overridepublic void open(Configuration config) {this.counter = getRuntimeContext().getMetricGroup().counter("myCounter");}@Overridepublic String map(String value) throws Exception {this.counter.inc();return value;}
}

你也可以自己实现counter。

public class MyMapper extends RichMapFunction<String, String> {private transient Counter counter;@Overridepublic void open(Configuration config) {this.counter = getRuntimeContext().getMetricGroup().counter("myCustomCounter", new CustomCounter());}@Overridepublic String map(String value) throws Exception {this.counter.inc();return value;}
}

 

2.2. Gauge

可以提供任何数据类型,要使用Gauge你必须要实现Gauge接口,可以返回任何类型。

public class MyMapper extends RichMapFunction<String, String> {private transient int valueToExpose = 0;@Overridepublic void open(Configuration config) {getRuntimeContext().getMetricGroup().gauge("MyGauge", new Gauge<Integer>() {@Overridepublic Integer getValue() {return valueToExpose;}});}@Overridepublic String map(String value) throws Exception {valueToExpose++;return value;}
}

 

2.3. Histogram(ing)

直方图(Histogram)用于测量长整型值的分布情况。

可以通过在 MetricGroup 上调用 histogram(String name, Histogram histogram) 来注册一个直方图。

public class MyMapper extends RichMapFunction<Long, Long> {private transient Histogram histogram;@Overridepublic void open(Configuration config) {this.histogram = getRuntimeContext().getMetricGroup().histogram("myHistogram", new MyHistogram());}@Overridepublic Long map(Long value) throws Exception {this.histogram.update(value);return value;}
}

ing

 

4. Meter

一个 Meter 用于测量平均吞吐量。

  • 可以使用 markEvent() 方法注册一个事件的发生。同时发生多个事件可以使用 markEvent(long n) 方法注册。
  • 在 MetricGroup 上调用 meter(String name, Meter meter) 来注册一个 Meter。

 

二. Scope:指标作用域

每个度量指标都被分配了一个标识符和一组键值对,用于报告该度量指标。
这个标识符基于三个组件:在注册度量指标时的用户定义名称,一个可选的用户定义作用域,以及一个系统提供的作用域。

例如,如果 A.B 是系统作用域,C.D 是用户作用域,E 是名称,那么度量指标的标识符将是 A.B.C.D.E。

你可以通过在 Flink 配置文件中设置 metrics.scope.delimiter 键来配置标识符使用的分隔符(默认为 .)。

 

1. User Scope

你可以通过调用 MetricGroup#addGroup(String name),MetricGroup#addGroup(int name),或者 MetricGroup#addGroup(String key, String value) 来定义用户作用域。

我们通过 MetricGroup#getMetricIdentifier 和 MetricGroup#getScopeComponents 方法返回的内容。

counter = getRuntimeContext().getMetricGroup().addGroup("MyMetrics").counter("myCounter");counter = getRuntimeContext().getMetricGroup().addGroup("MyMetricsKey", "MyMetricsValue").counter("myCounter");

 

2. System Scope ing

 

3. User Variables

你可以通过调用 MetricGroup#addGroup(String key, String value) 来定义一个用户变量。

这个方法会影响 MetricGroup#getMetricIdentifier、MetricGroup#getScopeComponents 和 MetricGroup#getAllVariables() 返回的内容。

counter = getRuntimeContext().getMetricGroup().addGroup("MyMetricsKey", "MyMetricsValue").counter("myCounter");

 

三. Reporter ing

Flink 支持用户将 Flink 的各项运行时指标发送给外部系统。

 

四. System metrics ing

默认情况下,Flink会收集多个度量指标,这些指标能够深入了解当前的状态。

 

五. REST API integration

度量指标可以通过监控REST API查询。以下是可用端点列表及其示例JSON响应。

序号metric类型API
1特定实体的metric- /jobmanager/metrics
- /taskmanagers/<taskmanagerid>/metrics
- /jobs/<jobid>/metrics
- /jobs/<jobid>/vertices/<vertexid>/subtasks/<subtaskindex>
2实体的聚合metric- /taskmanagers/metrics
- /jobs/metrics
- /jobs/<jobid>/vertices/<vertexid>/subtasks/metrics
- /jobs/<jobid>/vertices/<vertexid>/jm-operator-metrics
3实体子集上聚合的metric- /taskmanagers/metrics?taskmanagers=A,B,C
- /jobs/metrics?jobs=D,E,F
- /jobs/<jobid>/vertices/<vertexid>/subtasks/metrics?subtask=1,2,3

 

六. Dashboard integration

可以在仪表板中可视化每个任务或操作符收集的度量指标。在作业的主页面上,选择“Metrics”选项卡。在顶部图表中选择一个任务后,您可以使用“添加度量指标”下拉菜单选择要显示的度量指标。如下图:

  • 任务度量指标列出为<子任务索引>.<度量名称>。
  • 操作符度量指标列出为 <子任务索引>.<操作符名称>.<度量名称>

在这里插入图片描述

  • 每个度量指标将显示为单独的图表,其中 x 轴代表时间,y 轴表示测量值。
  • 所有图表每隔10秒自动更新一次,在导航到其他页面时仍会继续更新。
  • 可视化的度量指标数量没有限制,但是只有数值型度量指标可以被可视化显示。

 

这篇关于【Flink metric】Flink指标系统的系统性知识:以便我们实现特性化数据的指标监控与分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1088918

相关文章

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期