二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度

本文主要是介绍二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度计算

输入格式:如   abd###ce##f##*

 

package tree;
//二叉树的二叉链表实现
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
public class BTree<AnyType> {
BTNode rootNode=new BTNode();
class BTNode<AnyType>{
char data;
BTNode<AnyType> leftChildNode;
BTNode<AnyType> rightChildNode;
public BTNode(){
data=0;
leftChildNode=rightChildNode=null;
}
public BTNode(char data){
this.data=data;
leftChildNode=rightChildNode=null;
}
public BTNode(char data,BTNode leftChildNode,BTNode rightChildNode){
this.data=data;
leftChildNode=leftChildNode;
rightChildNode=rightChildNode;
}
}
//先序创建二叉树
char d[]=new char[100];
int i=0;
public BTNode creatBTree(){
BTNode node=null;
if(d[i]!='*'){
if(d[i]=='#'){
node=null;
i++;
}
else{
node=new BTNode(d[i]);
i++; 
node.leftChildNode=creatBTree();   
node.rightChildNode=creatBTree();			
}
}
return node;
}
//先序递归遍历
public void preOrder(BTNode<AnyType> t){
if(t!=null){
System.out.print(t.data);
preOrder(t.leftChildNode);
preOrder(t.rightChildNode);
}
}
//先序非递归遍历
public void preStackOrder(BTNode t){
Stack s=new Stack();
BTNode p=t;
while(p!=null&&s.isEmpty()!=true){
if(p!=null){
System.out.print(p.data);
s.push(p);
p=p.leftChildNode;
}
if(s.isEmpty()){
s.pop();
p=p.rightChildNode;
}
}
}
//中序递归遍历
public void inOrder(BTNode t){
if(t!=null){
inOrder(t.leftChildNode);
System.out.print(t.data);
inOrder(t.rightChildNode);
}
}
//中序非递归遍历
public void inStackOrder(BTNode t){
Stack<BTNode> s=new Stack<BTNode>();
BTNode p=t;
while(p!=null&&s.isEmpty()){
if(p!=null){
s.push(p);
p=p.leftChildNode;
}
if(s.isEmpty()!=true){
p=s.pop();
System.out.print(p.data);
p=p.rightChildNode;
}
}
}
//后序递归遍历
public void postOrder(BTNode t){
if(t!=null){
postOrder(t.leftChildNode);
postOrder(t.rightChildNode);
System.out.print(t.data);
}
}
//后序非递归遍历
public void postStackOrder(BTNode t){
Stack<BTNode> s=new Stack<BTNode>();
Stack<Integer> ss=new Stack<Integer>();
Integer i=new Integer(1);
BTNode p=t;
BTNode q=t;
while(p!=null||s.isEmpty()!=true){	
while(p!=null){
s.push(p);
ss.push(new Integer(0));
p=p.leftChildNode;	
}
while(s.isEmpty()!=true&&ss.peek().equals(i)){
ss.pop();
q=s.pop();
System.out.print(q.data);	
}
if(s.isEmpty()!=true){
ss.pop();
ss.push(i);
p=s.peek();
p=p.rightChildNode;	
}	
}	
}
//层次非递归遍历
public void levelQueueOrder(BTNode t){
Queue<BTNode> q=new LinkedList<BTNode>();
q.add(t);
while(q.isEmpty()!=true){
BTNode step=q.remove();
System.out.print(step.data);
if(step.leftChildNode!=null){
q.add(step.leftChildNode);
}
if(step.rightChildNode!=null){
q.add(step.rightChildNode);
}
}
}
//计算二叉树深度
public int depth(BTNode t){
int leftDepth,rightDepth;
if(t==null) 
return 0;
leftDepth=depth(t.leftChildNode);
rightDepth=depth(t.rightChildNode);
return Math.max(leftDepth,rightDepth)+1;
}
//叶子结点个数
int num=0;
public int leaf(BTNode t){
if(t!=null){
if(t.leftChildNode==null&&t.rightChildNode==null)
num++;
leaf(t.leftChildNode);
leaf(t.rightChildNode);
}
return num;
}
public static void main(String[] args) {
BTree bt=new BTree();
Scanner sc=new Scanner(System.in);
String a=sc.next();
char c[]=a.toCharArray();
for(int i=0;i<c.length;i++){
bt.d[i]=c[i];
}
bt.rootNode=bt.creatBTree();
System.out.println("先序遍历");
bt.preOrder(bt.rootNode);
System.out.println();
System.out.println("中序遍历");
bt.inOrder(bt.rootNode);
System.out.println();
System.out.println("后序遍历");
bt.postOrder(bt.rootNode);
System.out.println();
System.out.println("后序非递归遍历");
bt.postStackOrder(bt.rootNode);
System.out.println("层次遍历");
bt.levelQueueOrder(bt.rootNode);
System.out.println();
System.out.println("二叉树深度");
System.out.println(bt.depth(bt.rootNode));
System.out.println("叶子结点个数");
System.out.println(bt.leaf(bt.rootNode));
}
}

这篇关于二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088835

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实