二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度

本文主要是介绍二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度计算

输入格式:如   abd###ce##f##*

 

package tree;
//二叉树的二叉链表实现
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
public class BTree<AnyType> {
BTNode rootNode=new BTNode();
class BTNode<AnyType>{
char data;
BTNode<AnyType> leftChildNode;
BTNode<AnyType> rightChildNode;
public BTNode(){
data=0;
leftChildNode=rightChildNode=null;
}
public BTNode(char data){
this.data=data;
leftChildNode=rightChildNode=null;
}
public BTNode(char data,BTNode leftChildNode,BTNode rightChildNode){
this.data=data;
leftChildNode=leftChildNode;
rightChildNode=rightChildNode;
}
}
//先序创建二叉树
char d[]=new char[100];
int i=0;
public BTNode creatBTree(){
BTNode node=null;
if(d[i]!='*'){
if(d[i]=='#'){
node=null;
i++;
}
else{
node=new BTNode(d[i]);
i++; 
node.leftChildNode=creatBTree();   
node.rightChildNode=creatBTree();			
}
}
return node;
}
//先序递归遍历
public void preOrder(BTNode<AnyType> t){
if(t!=null){
System.out.print(t.data);
preOrder(t.leftChildNode);
preOrder(t.rightChildNode);
}
}
//先序非递归遍历
public void preStackOrder(BTNode t){
Stack s=new Stack();
BTNode p=t;
while(p!=null&&s.isEmpty()!=true){
if(p!=null){
System.out.print(p.data);
s.push(p);
p=p.leftChildNode;
}
if(s.isEmpty()){
s.pop();
p=p.rightChildNode;
}
}
}
//中序递归遍历
public void inOrder(BTNode t){
if(t!=null){
inOrder(t.leftChildNode);
System.out.print(t.data);
inOrder(t.rightChildNode);
}
}
//中序非递归遍历
public void inStackOrder(BTNode t){
Stack<BTNode> s=new Stack<BTNode>();
BTNode p=t;
while(p!=null&&s.isEmpty()){
if(p!=null){
s.push(p);
p=p.leftChildNode;
}
if(s.isEmpty()!=true){
p=s.pop();
System.out.print(p.data);
p=p.rightChildNode;
}
}
}
//后序递归遍历
public void postOrder(BTNode t){
if(t!=null){
postOrder(t.leftChildNode);
postOrder(t.rightChildNode);
System.out.print(t.data);
}
}
//后序非递归遍历
public void postStackOrder(BTNode t){
Stack<BTNode> s=new Stack<BTNode>();
Stack<Integer> ss=new Stack<Integer>();
Integer i=new Integer(1);
BTNode p=t;
BTNode q=t;
while(p!=null||s.isEmpty()!=true){	
while(p!=null){
s.push(p);
ss.push(new Integer(0));
p=p.leftChildNode;	
}
while(s.isEmpty()!=true&&ss.peek().equals(i)){
ss.pop();
q=s.pop();
System.out.print(q.data);	
}
if(s.isEmpty()!=true){
ss.pop();
ss.push(i);
p=s.peek();
p=p.rightChildNode;	
}	
}	
}
//层次非递归遍历
public void levelQueueOrder(BTNode t){
Queue<BTNode> q=new LinkedList<BTNode>();
q.add(t);
while(q.isEmpty()!=true){
BTNode step=q.remove();
System.out.print(step.data);
if(step.leftChildNode!=null){
q.add(step.leftChildNode);
}
if(step.rightChildNode!=null){
q.add(step.rightChildNode);
}
}
}
//计算二叉树深度
public int depth(BTNode t){
int leftDepth,rightDepth;
if(t==null) 
return 0;
leftDepth=depth(t.leftChildNode);
rightDepth=depth(t.rightChildNode);
return Math.max(leftDepth,rightDepth)+1;
}
//叶子结点个数
int num=0;
public int leaf(BTNode t){
if(t!=null){
if(t.leftChildNode==null&&t.rightChildNode==null)
num++;
leaf(t.leftChildNode);
leaf(t.rightChildNode);
}
return num;
}
public static void main(String[] args) {
BTree bt=new BTree();
Scanner sc=new Scanner(System.in);
String a=sc.next();
char c[]=a.toCharArray();
for(int i=0;i<c.length;i++){
bt.d[i]=c[i];
}
bt.rootNode=bt.creatBTree();
System.out.println("先序遍历");
bt.preOrder(bt.rootNode);
System.out.println();
System.out.println("中序遍历");
bt.inOrder(bt.rootNode);
System.out.println();
System.out.println("后序遍历");
bt.postOrder(bt.rootNode);
System.out.println();
System.out.println("后序非递归遍历");
bt.postStackOrder(bt.rootNode);
System.out.println("层次遍历");
bt.levelQueueOrder(bt.rootNode);
System.out.println();
System.out.println("二叉树深度");
System.out.println(bt.depth(bt.rootNode));
System.out.println("叶子结点个数");
System.out.println(bt.leaf(bt.rootNode));
}
}

这篇关于二叉树的先序创建,先序,中序,后序的递归与非递归遍历,层次遍历,叶子结点数及树的深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088835

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3