使用Flink CDC实时监控MySQL数据库变更

2024-06-24 01:28

本文主要是介绍使用Flink CDC实时监控MySQL数据库变更,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在现代数据架构中,实时数据处理变得越来越重要。Flink CDC(Change Data Capture)是一种强大的工具,可以帮助我们实时捕获数据库的变更,并进行处理。本文将介绍如何使用Flink CDC从MySQL数据库中读取变更数据,并将其打印到控制台。

环境准备

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.12.0</version>
</dependency>
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>1.12.0</version>
</dependency>
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>1.12.0</version>
</dependency>
<dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version>
</dependency>
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.12</artifactId><version>1.12.0</version>
</dependency>
<dependency><groupId>com.ververica</groupId><artifactId>flink-connector-mysql-cdc</artifactId><version>2.0.0</version>
</dependency>
<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.75</version>
</dependency>
<dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.23</version>
</dependency>
  1. 获取Flink执行环境

首先,我们需要获取Flink的执行环境。这是所有Flink作业的起点。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
  1. 启用检查点和设置并行度

为了确保作业的容错性和状态恢复,我们需要启用检查点,并设置作业的并行度。

env.enableCheckpointing(500); // 每500毫秒创建一个检查点
env.setParallelism(1); // 设置作业的并行度为1
  1. 使用Debezium Source读取MySQL的binlog

接下来,我们使用Debezium Source读取MySQL的binlog。我们需要配置MySQL的连接信息、监控的数据库和表、反序列化器以及启动选项。

DebeziumSourceFunction<String> sourceFunction = MySqlSource.<String>builder().serverTimeZone("Asia/Shanghai") // 设置时区为亚洲/上海.hostname("localhost") // MySQL的IP地址.port(3306) // MySQL的端口.username("root") // MySQL的用户名.password("123456") // MySQL的密码.databaseList("my_db") // 监控的数据库.tableList("my_db.user") // 监控的数据库下的表.deserializer(new JsonDebeziumDeserializationSchema()) // 反序列化.startupOptions(StartupOptions.initial()) // 启动选项.build();

这里 JsonDebeziumDeserializationSchema类的代码如下:

import com.alibaba.fastjson.JSONObject;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;import java.util.List;/**
*  自定义DeserializationSchema进行反序列化。
*/public class JsonDebeziumDeserializationSchema implements DebeziumDeserializationSchema<String> {@Overridepublic void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception {//创建JSON对象用于存储最终数据JSONObject result = new JSONObject();String topic = sourceRecord.topic();String[] fields = topic.split("\\.");String database = fields[1];String tableName = fields[2];Struct value  = (Struct)sourceRecord.value();//获取before数据Struct before = value.getStruct("before");JSONObject beforeJson = getJson(before);//获取after数据Struct after = value.getStruct("after");JSONObject afterJson = getJson(after);//获取操作类型Envelope.Operation operation = Envelope.operationFor(sourceRecord);//将字段写入JSON对象result.put("database",database);result.put("tableName",tableName);result.put("type",operation);result.put("before",beforeJson);result.put("after",afterJson);//输出数据collector.collect(result.toJSONString());}/***  获取字段值并写入result对象* @param before* @return*/private JSONObject getJson(Struct before) {JSONObject jsonObject = new JSONObject();if(before != null){Schema beforeSchema = before.schema();List<Field> beforeFields = beforeSchema.fields();for (Field field : beforeFields) {Object beforeValue = before.get(field);jsonObject.put(field.name(), beforeValue);}}return jsonObject;}@Overridepublic TypeInformation getProducedType() {return BasicTypeInfo.STRING_TYPE_INFO;}
}
  1. 添加数据源并打印数据

将Debezium源函数添加到Flink环境中,生成一个数据流,并将数据流中的数据打印到控制台。

DataStream<String> dataStreamSource = env.addSource(sourceFunction, TypeInformation.of(String.class));
DataStreamSink<String> print = dataStreamSource.print();
  1. 启动任务

最后,启动Flink作业,开始处理数据流。

env.execute("Flink-CDC");

6.测试

在这里插入图片描述

总结

通过上述步骤,我们可以使用Flink CDC实时监控MySQL数据库的变更,并将变更数据以JSON格式打印出来。这种方法不仅适用于数据监控,还可以用于实时数据处理和分析。

这篇关于使用Flink CDC实时监控MySQL数据库变更的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088804

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We