PINN解偏微分方程实例4

2024-06-24 00:52

本文主要是介绍PINN解偏微分方程实例4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PINN解偏微分方程实例4

  • 一、正问题
    • 1. Diffusion equation
    • 2. Burgers’ equation
    • 3. Allen–Cahn equation
    • 4. Wave equation
  • 二、反问题
    • 1. Burgers’ equation
    • 3. 部分代码示例

  本文使用 PINN解偏微分方程实例1中展示的代码求解了以四个具体的偏微分方程,包括Diffusion,Burgers, Allen–Cahn和Wave方程,另外重新写了一个求解反问题的代码,以burger方程为例。

一、正问题

1. Diffusion equation

一维扩散方程:
∂ u ∂ t = ∂ 2 u ∂ x 2 + e − t ( − sin ⁡ ( π x ) + π 2 sin ⁡ ( π x ) ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( x , 0 ) = sin ⁡ ( π x ) u ( − 1 , t ) = u ( 1 , t ) = 0 \begin{array}{l} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}\left(-\sin (\pi x)+\pi^{2} \sin (\pi x)\right), \quad x \in[-1,1], t \in[0,1] \\ u(x, 0)=\sin (\pi x) \\ u(-1, t)=u(1, t)=0 \end{array} tu=x22u+et(sin(πx)+π2sin(πx)),x[1,1],t[0,1]u(x,0)=sin(πx)u(1,t)=u(1,t)=0
其中 u u u 是扩散物质的浓度。精确解是 u ( x , t ) = s i n ( π x ) e − t u(x,t)=sin(\pi x)e^{-t} u(x,t)=sin(πx)et 表示。

请添加图片描述

2. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。在本文中, ν ν ν 设为 0.01 / π 0.01/\pi 0.01/π
请添加图片描述

3. Allen–Cahn equation

Allen–Cahn方程的形式如下:
∂ u ∂ t = D ∂ 2 u ∂ x 2 + 5 ( u − u 3 ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = x 2 cos ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = − 1 , \begin{array}{l} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+5\left(u-u^{3}\right), \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=x^{2} \cos (\pi x), \\ u(-1, t)=u(1, t)=-1, \end{array} tu=Dx22u+5(uu3),x[1,1],t[0,1],u(x,0)=x2cos(πx),u(1,t)=u(1,t)=1,
其中,扩散系数 D = 0.001 D=0.001 D=0.001 .

请添加图片描述

4. Wave equation

一维波动方程如下:
∂ 2 u ∂ t 2 − 4 ∂ 2 u ∂ x 2 = 0 , x ∈ [ 0 , 1 ] , t ∈ [ 0 , 1 ] , u ( 0 , t ) = u ( 1 , t ) = 0 , t ∈ [ 0 , 1 ] , u ( x , 0 ) = sin ⁡ ( π x ) + 1 2 sin ⁡ ( 4 π x ) , x ∈ [ 0 , 1 ] , ∂ u ∂ t ( x , 0 ) = 0 , x ∈ [ 0 , 1 ] , \begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in[0,1], t \in[0,1], \\ u(0, t)=u(1, t)=0, \quad t \in[0,1], \\ u(x, 0)=\sin (\pi x)+\frac{1}{2} \sin (4 \pi x), \quad x \in[0,1], \\ \frac{\partial u}{\partial t}(x, 0)=0, \quad x \in[0,1], \end{array} t22u4x22u=0,x[0,1],t[0,1],u(0,t)=u(1,t)=0,t[0,1],u(x,0)=sin(πx)+21sin(4πx),x[0,1],tu(x,0)=0,x[0,1],
精确解为:
u ( x , t ) = sin ⁡ ( π x ) cos ⁡ ( 2 π t ) + 1 2 sin ⁡ ( 4 π x ) cos ⁡ ( 8 π t ) . u(x, t)=\sin (\pi x) \cos (2 \pi t)+\frac{1}{2} \sin (4 \pi x) \cos (8 \pi t) . u(x,t)=sin(πx)cos(2πt)+21sin(4πx)cos(8πt).

二、反问题

1. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。
  这里假设 v v v 未知,我们同时求解方程的解和v的值。

在这里插入图片描述

3. 部分代码示例

import torch
import numpy as np
import matplotlib.pyplot as pltsin = torch.sin
cos = torch.cos
exp = torch.exp
pi = torch.piepochs = 50000    # 训练代数,要为1000的整数倍
h = 100    # 画图网格密度
N = 30    # 内点配置点数
N1 = 10    # 边界点配置点数
N2 = 5000    # 数据点# error
L2_error = []
L2_error_data = []
L2_error_eq = []
# Training
u = MLP()
opt = torch.optim.Adam(params=u.parameters())
xt, u_real = test_data(x_inf=-1, x_sup=1, t_inf=0, t_sup=1, h=h)
print("**************** equation+data ********************")
for i in range(epochs):opt.zero_grad()l = l_interior(u) \+ l_down(u) \+ l_left(u) \+ l_right(u) \+ l_data(u)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error.append(error)print("L2相对误差: ", error)u1 = MLP()
opt = torch.optim.Adam(params=u1.parameters())
print("**************** data ********************")
for i in range(epochs):opt.zero_grad()l = l_data(u1)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u1(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error_data.append(error)print("L2相对误差: ", error)u2 = MLP()
opt = torch.optim.Adam(params=u2.parameters())
print("**************** equation ********************")
for i in range(epochs):opt.zero_grad()l = l_interior(u2) \+ l_down(u2) \+ l_left(u2) \+ l_right(u2)l.backward()opt.step()if (i+1) % 1000 == 0 or i == 0:u_pred = u2(xt)error = l2_relative_error(u_real, u_pred.detach().numpy())L2_error_eq.append(error)print("L2相对误差: ", error)print("********************************")
print("PINN相对误差为: ", L2_error[-1])
print("equation相对误差为: ", L2_error_eq[-1])
print("data相对误差为: ", L2_error_data[-1])
print("********************************")x = range(int(epochs / 1000 + 1))
plt.plot(x, L2_error, c='red', label='pinn')
plt.plot(x, L2_error_data, c='blue', label='only data')
plt.plot(x, L2_error_eq, c='yellow', label='only equation')
plt.scatter(x, L2_error, c='red')
plt.scatter(x, L2_error_data, c='blue')
plt.scatter(x, L2_error_eq, c='yellow')
plt.yscale('log')
plt.legend()
plt.show()

完整代码目录如下:
在这里插入图片描述

这篇关于PINN解偏微分方程实例4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088743

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

Java实例化对象的​7种方式详解

《Java实例化对象的​7种方式详解》在Java中,实例化对象的方式有多种,具体取决于场景需求和设计模式,本文整理了7种常用的方法,文中的示例代码讲解详细,有需要的可以了解下... 目录1. ​new 关键字(直接构造)​2. ​反射(Reflection)​​3. ​克隆(Clone)​​4. ​反序列化

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表