从函数逼近角度理解神经网络、残差连接与激活函数

2024-06-23 21:12

本文主要是介绍从函数逼近角度理解神经网络、残差连接与激活函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

最近思考激活函数的时候,突然想到神经网络中残差连接是不是和函数的泰勒展开很像,尤其是在激活函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2时(这个激活函数想法来源于 f ( x ) = R e L U 2 ( x ) [ 3 ] f(x)=ReLU^2(x)[3] f(x)=ReLU2(x)[3]),所以验证了一下就顺便写下来了,本文抛砖引玉,如果有建议或更好的想法可以写到评论区。

常见函数的泰勒展开

这里仅简单写几个函数的泰勒公式,其他可查看参考文章[1]
s i n ( x ) = x − x 3 3 ! ​ + x 5 5 ! ​ − x 7 7 ! ​ + o ( x 7 ) sin(x) =x−\frac{x^3}{3!}​+\frac{x^5}{5!} ​−\frac{x^7}{7!} ​+o(x^7) sin(x)=x3!x3+5!x57!x7+o(x7) c o s ( x ) = 1 − x 2 2 ! ​ + x 4 4 ! ​ − x 6 6 ! ​ + o ( x 6 ) cos(x)=1−\frac{x^2}{2!} ​+\frac{x^4}{4!} ​−\frac{x^6}{6!}​+o(x^6) cos(x)=12!x2+4!x46!x6+o(x6) e x = 1 + x + x 2 2 ! + x 3 3 ! ​ + x 4 4 ! + x 5 5 ! + o ( x 5 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}​+\frac{x^4}{4!}+\frac{x^5}{5!}+o(x^5) ex=1+x+2!x2+3!x3+4!x4+5!x5+o(x5)
其中 o ( x n ) o(x^n) o(xn)表示皮亚诺(Peano)余项

函数逼近(多项式逼近)

在统计计算和其它科学计算中, 经常需要计算各种函数的值, 对函数进行逼近, 用数值方法计算积分、微分。(这里摘录部分多项式逼近的内容)

数学中的超越函数如 e x , l n ( x ) , s i n ( x ) e^x,ln(x),sin(x) ex,ln(x),sin(x)在计算机中经常用泰勒级数展开来计算, 这就是用多项式来逼近函数。 数学分析中的Weirstrass定理表明, 闭区间上的连续函数可以用多项式一致逼近。 泰勒展开要求函数有多阶导数, 我们需要找到对更一般函数做多项式逼近的方法[2]。

考虑如下的函数空间
L 2 [ a , b ] = { g ( ⋅ ) : g ( x ) ∈ [ a , b ] , ∫ a b g 2 ( x ) w ( x ) d x < ∞ } ( 2.1 ) L^2[a,b]=\left \{ g(\cdot ): g(x)\in [a,b],\int_{a}^{b} g^2(x)w(x)dx<\infty \right \} \quad (2.1) L2[a,b]={g():g(x)[a,b],abg2(x)w(x)dx<}(2.1)则是 L 2 [ a , b ] L^2[a,b] L2[a,b]线性空间,在 L 2 [ a , b ] L^2[a,b] L2[a,b]中定义内积
< f , g > = ∫ a b f ( x ) g ( x ) w ( x ) d x ( 2.2 ) <f,g>=\int_{a}^{b} f(x)g(x)w(x)dx \quad (2.2) <f,g>=abf(x)g(x)w(x)dx(2.2) 其中 w ( x ) w(x) w(x)是适当的权重函数, L 2 [ a , b ] L^2[a,b] L2[a,b]则为希尔伯特(Hilbert)空间。 对 g ( x ) ∈ L 2 [ a , b ] g(x)\in L^2[a,b] g(x)L2[a,b], 假设希望用 n n n阶多项式 f n ( x ) f_n(x) fn(x)逼近,使得
∥ f n − g ∥ 2 = ∫ a b ∣ f n ( x ) − g ( x ) ∣ 2 w ( x ) d x ( 2.3 ) \left \| f_n-g \right \|^2=\int_{a}^{b} \left | f_n(x)-g(x) \right |^2 w(x)dx \quad (2.3) fng2=abfn(x)g(x)2w(x)dx(2.3)最小。 如何求这样的多项式?

用Gram-Schmidt正交化方法可以在 L 2 [ a , b ] L^2[a,b] L2[a,b]中把多项式序列 { 1 , x , x 2 , … } \left \{ 1,x,x^2,\dots \right \} {1,x,x2,} 正交化为正交序列 { P 0 , P 1 , P 2 , … } \left \{ P_0,P_1,P_2,\dots \right \} {P0,P1,P2,}, 序列中函数彼此正交,且 P k P_k Pk k k k阶多项式, 称 { P 0 , P 1 , P 2 , … } \left \{ P_0,P_1,P_2,\dots \right \} {P0,P1,P2,}为正交多项式。 设 H n [ a , b ] H_n[a,b] Hn[a,b]为函数 { 1 , x , x 2 , … , x n } \left \{ 1,x,x^2,\dots,x^n \right \} {1,x,x2,,xn}的线性组合构成的线性空间, 则 { P 0 , P 1 , … , P n } \left \{ P_0,P_1,\dots,P_n \right \} {P0,P1,,Pn}构成 H n [ a , b ] H_n[a,b] Hn[a,b]的正交基且 P n [ a , b ] P_n[a,b] Pn[a,b] L 2 [ a , b ] L^2[a,b] L2[a,b]的子希尔伯特空间, 使得加权平方距离 ( 2.3 ) (2.3) (2.3)最小的 f n ( x ) f_n(x) fn(x) g ( ⋅ ) g(\cdot) g()在子空间 H n [ a , b ] H_n[a,b] Hn[a,b]的投影, 记为 P ~ H n [ a , b ] ( g ) \tilde{P}_{H_n[a,b]}(g) P~Hn[a,b](g), 投影可以表示为 { P 0 , P 1 , … , P n } \left \{ P_0,P_1,\dots,P_n \right \} {P0,P1,,Pn}的线性组合
P ~ H n [ a , b ] ( g ) = ∑ j = 0 n < g , P j > ∥ P j ∥ 2 P j ⋅ \tilde{P}_{H_n[a,b]}(g) = \sum_{j=0}^{n} \frac{<g,P_j>}{\left \| P_j \right \|^2 } P_j\cdot P~Hn[a,b](g)=j=0nPj2<g,Pj>Pj 这样,只要预先找到 [ a , b ] [a,b] [a,b]上的多项式的正交基, 通过计算内积就可以很容易地找到使得 ( 2.3 ) (2.3) (2.3)公式最小的 f n ( x ) f_n(x) fn(x)。 对于 L 2 [ a , b ] L^2[a,b] L2[a,b]中的任意函数 g ( x ) g(x) g(x)
lim ⁡ n → ∞ ∥ P ~ H n [ a , b ] ( g ) − g ∥ 2 = 0 \lim_{n \to \infty}\left \| \tilde{P}_{H_n[a,b]}(g)-g \right \|^2=0 nlim P~Hn[a,b](g)g 2=0 于是有
g = lim ⁡ n → ∞ P ~ H n [ a , b ] ( g ) = ∑ j = 0 ∞ < g , P j > ∥ P j ∥ 2 P j ⋅ g=\lim_{n \to \infty} \tilde{P}_{H_n[a,b]}(g) = \sum_{j = 0}^{\infty} \frac{<g,P_j>}{\left \| P_j \right \|^2 } P_j\cdot g=nlimP~Hn[a,b](g)=j=0Pj2<g,Pj>Pj 因为 L 2 [ a , b ] L^2[a,b] L2[a,b]依赖于定义域 [ a , b ] [a,b] [a,b]和权重函数 w ( ⋅ ) w(\cdot) w(), 所以正交多项式也依赖于 [ a , b ] [a,b] [a,b] w ( ⋅ ) w(\cdot) w()。 针对定义域 [ − 1 , 1 ] [-1,1] [1,1], [ 0 , ∞ ] [0,\infty] [0,] [ − ∞ , ∞ ] [-\infty,\infty] [,] 和几种不同的权重函数可以得到不同的正交多项式序列,详细参考[2]

神经网络、残差连接与多项式逼近

神经网络一般由层的参数、激活函数、及层间连接构成,对于神经网络(无跨层连接),可以定义其函数 F : R m ⟶ R n F:R^{m}\longrightarrow R^{n} F:RmRn 的带参数的形式为:
F n ( x ; θ ) = f 1 ∘ g 1 ∘ f 2 ∘ g 2 ∘ ⋯ ∘ f n ∘ g n F_n(x; \theta) = f_{1} \circ g_1\circ f_{2} \circ g_2 \circ \dots \circ f_{n} \circ g_n Fn(x;θ)=f1g1f2g2fngn其中 g g g为激活函数, f f f为全连接函数。一般在神经网络中 f i = w i x + b i f_i=w_ix+b_i fi=wix+bi,这里为了方便我们去掉bias项,即 f i = w i x f_i=w_i x fi=wix,首先假设 g = x g=x g=x 即线性的激活函数,且为了简单 w , x w,x w,x都假设为标量,我们可以得到:

    F 1 = w 1 x F_1=w_1x F1=w1x
    F 2 = w 2 F 1 = w 2 w 1 x F_2=w_2 F_1=w_2w_1x F2=w2F1=w2w1x
    … \dots
    F n = ( ∏ i = 1 n w i ) x F_n=(\prod_{i=1}^{n}w_i)x Fn=(i=1nwi)x

所以我们会发现,由线性的激活函数构成的网络仍然为线性的,即 ∏ i = 1 n w i \prod_{i=1}^{n}w_i i=1nwi是一个常数,所以无论有多少层,网络都是线性的,同理加残差连接也是线性的。

为了获得非线性,我们可以假设 g = x 2 g=x^2 g=x2,这时我们也可以得到递推公式

    F 1 = ( w 1 ) 2 x 2 F_1=(w_1)^2x^2 F1=(w1)2x2
    F 2 = ( w 2 F 1 ) 2 = ( w 2 ) 2 ( w 1 ) 4 x 4 F_2=(w_2 F_1)^2=(w_2)^2(w_1)^4x^4 F2=(w2F1)2=(w2)2(w1)4x4
    … \dots
    F n = ( ∏ i = 1 n ( w i ) 2 n − i + 1 ) x 2 n F_n=(\prod_{i=1}^{n}(w_i)^{2^{n-i+1}})x^{2^n} Fn=(i=1n(wi)2ni+1)x2n

我们也会发现,由非线性的激活函数构成的网络为非线性的,这里可以根据残差网络加入跨层连接。

    F 1 = ( w 1 ) 2 x 2 + x F_1=(w_1)^2x^2 + x F1=(w1)2x2+x
    F 2 = ( w 2 F 1 ) 2 + F 1 = ( w 2 ) 2 ( w 1 ) 4 x 4 + 2 ( w 1 w 2 ) 2 x 3 + ( ( w 2 ) 2 + ( w 1 ) 2 ) x 2 + x F_2=(w_2 F_1)^2+F_1=(w_2)^2(w_1)^4x^4+2(w_1w_2)^2x^3+((w_2)^2+(w_1)^2)x^2+x F2=(w2F1)2+F1=(w2)2(w1)4x4+2(w1w2)2x3+((w2)2+(w1)2)x2+x
    … \dots
    F n = c 0 x + c 1 x 2 + c 2 x 3 + c 3 x 4 + . . . + c 2 n − 1 x 2 n F_n=c_0x+c_1x^{2}+c_2x^{3}+c_3x^{4}+...+c_{2n-1}x^{2^n} Fn=c0x+c1x2+c2x3+c3x4+...+c2n1x2n

递推公式太复杂了,为了方便这里 F n F_n Fn不再在里面写 w w w参数了,而是合并作为参数 c c c。从这里我们就可以看到残差网络的作用,是作为函数的n次多项式逼近,和泰勒展开是基本一致的。所以相比于直接使用高阶项,残差网络带来的多项式逼近有更好的函数拟合效果。

这里只是讨论了 g = x 2 g=x^2 g=x2的情形,其他激活函数的级数公式会更加复杂,总体是一个低阶到高阶的加和函数。

利用激活实现函数多项式逼近

先发后改,后面再修改补充。。。

参考文章

  1. 泰勒公式、麦克劳林公式、欧拉公式
  2. 函数逼近 | 统计计算
  3. ReLU 2 ^2 2 Wins: Discovering Efficient Activation Functions for Sparse LLMs

这篇关于从函数逼近角度理解神经网络、残差连接与激活函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088289

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

java连接opcua的常见问题及解决方法

《java连接opcua的常见问题及解决方法》本文将使用EclipseMilo作为示例库,演示如何在Java中使用匿名、用户名密码以及证书加密三种方式连接到OPCUA服务器,若需要使用其他SDK,原理... 目录一、前言二、准备工作三、匿名方式连接3.1 匿名方式简介3.2 示例代码四、用户名密码方式连接4

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使