使用Dash开发交互式数据可视化网页--响应式编程

2024-06-23 21:08

本文主要是介绍使用Dash开发交互式数据可视化网页--响应式编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交互性

后续的操作前,需要安装如下Python包

pip install dash==0.20.0  # The core dash backend
pip install dash-renderer==0.11.2  # The dash front-end
pip install dash-html-components==0.8.0  # HTML components
pip install dash-core-components==0.18.1  # Supercharged components
pip install plotly --upgrade  # Plotly graphing library used in examples

第一部分
完成了整体布局,但是基本都是静态图形,无法体现dash交互性数据探索特性。这一部分则是让图形能够动起来,对我们的操作有所回应。

import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()app.layout = html.Div([dcc.Input(id='my-id', value='initial vale', type='text'),html.Div(id='my-div')
])@app.callback(Output(component_id='my-div', component_property='children'),[Input(component_id='my-id', component_property='value')]
)
def update_output_div(input_value):return 'you\'ve entered "{}"'.format(input_value)if __name__=='__main__':app.run_server()

运行之后会的界面只有一个dcc.Input提供的输入框,但是这个输入框是输入后,是可以改变页面中的文字。那么这个是如何实现的呢?

我们的应用界面的输入和输出是通过app.callback装饰器进行声明。

在Dash中,应用的输入输出其实就是某个组件的属性(properties)。因此,Output(component_id='my-div', component_property='children')就可以解释为,将值输出到ID为my-div的HTML组件的children的参数中,而[Input(component_id='my-id', component_property='value')]则表明输入时来自于ID为my-idvalue参数。

随着输入的值的改变,装饰器会调用函数update_output_div生成新值。这其实有点像Excel,当你写好一个函数后,修改原来值会产生新的值,这种编程方法叫做"Reactive Programming",应该可以翻译为响应式编程吧.

让我们更进一步,看看使用Slider组件加上响应式编程后,图片是如何动起来. 数据和之前使用的一致,之前是展示了所有年份,不同洲的国家的GDP分布情况。而这里则可以使用滑动栏的方式,逐年查看。

import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pddf = pd.read_csv('https://raw.githubusercontent.com/plotly/''datasets/master/gapminderDataFiveYear.csv')app = dash.Dash()app.layout = html.Div([dcc.Graph(id = 'graph-with-slider'),dcc.Slider(id = 'years-slider',min = df['year'].min(),max = df['year'].max(),value = df['year'].min(),step = None,marks = {str(year): str(year) for year in df['year'].unique()})
])@app.callback(dash.dependencies.Output(component_id = 'graph-with-slider', component_property = "figure"),[dash.dependencies.Input('years-slider', 'value')]
)
def update_figure(selected_year):filtered_df = df[df.year == selected_year]traces = []for i in filtered_df.continent.unique():df_by_continent = filtered_df[filtered_df['continent'] == i]traces.append(go.Scatter(x = df_by_continent['gdpPercap'],y = df_by_continent['lifeExp'],text = df_by_continent['country'],mode = 'markers',opacity = 0.7,marker = {'size': 15,'line': {'width':0.5, 'color':'white'}},name = i))return {'data': traces,'layout': go.Layout(xaxis = {'type':'log', 'title':'GDP Per Capita'},yaxis = {'title':'Life Expectancy', 'range':[20,90]},margin = {'l':40, 'b':40, 't':10, 'r':10},legend = {'x':0, 'y':1},hovermode = 'closest')}if __name__ == '__main__':app.run_server()

首先是在布局中设置了两个占位组件,这两个占位组件一个用于提供年份用于筛选,一个用于则是展示输出。然后update_figure接受值返回对应的图形对象,最后展示到浏览器中。

Dash应用在启动的时候会加载数据,因此当用户访问应用的时候,数据已经在内存中,随后用户的交互操作就能得到及时的响应。当然callback函数不会修改原始数据,它仅仅是在内存中创建新的拷贝而已。

多个输入值

上一节只是单个输入单个输出,在Dash中,每个Output,都可以由多个Input。这一部分则是介绍通过加入更多调节组件多角度地展示数据。这里用到了五个调节组件,为2个Dropdown, 2个RadioItems和1个Slider

import dash
from dash.dependencies import Input, Output
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pdapp = dash.Dash()df = pd.read_csv('https://gist.githubusercontent.com/chriddyp/''cb5392c35661370d95f300086accea51/raw/''8e0768211f6b747c0db42a9ce9a0937dafcbd8b2/''indicators.csv')available_indicators = df['Indicator Name'].unique()app.layout = html.Div([html.Div([html.Div([dcc.Dropdown(id='xaxis-column',options=[{'label':i, 'value':i} for i in available_indicators],value = 'Fertility rate, total(births per woman)'),dcc.RadioItems(id = 'xaxis-type',options = [{'label':i, 'value':i} for i in ['Liner','Log']],value = 'Liner',labelStype={'display':'inline-block'})],style = {'width':'48%', 'display':'inline-block'}),html.Div([dcc.Dropdown(id = 'yaxis-column',options = [{'label':i, 'value':i} for i in available_indicators],value = 'Life expectancy at birth, total(year)'),dcc.RadioItems(id = 'yaxis-type',options = [{'label':i, 'value':i} for i in ['Liner','Log']],value = 'Liner',labelStyle={'display':'inline-block'})], style={'width':'48%','float':'right','display':'inline-block'})]),dcc.Graph(id='indicator-graphic'),dcc.Slider(id='year-slider',min=df['Year'].min(),max=df['Year'].max(),value=df['Year'].max(),step=None,marks={str(year): str(year) for year in df['Year'].unique()})
])@app.callback(Output('indicator-graphic','figure'),[Input('xaxis-column','value'),Input('yaxis-column','value'),Input('xaxis-type','value'),Input('yaxis-type','value'),Input('year-slider','value')]
)
def update_graph(xaxis_column_name, yaxis_column_name,xaxis_type, yaxis_type,year_value):dff = df[df['Year'] == year_value]return {'data':[go.Scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],mode = 'markers',marker = {'size': 15,'opacity': 0.5,'line':{'width':0.5, 'color':'white'}})],'layout':go.Layout(xaxis={'title':xaxis_column_name,'type':'linear' if xaxis_type == 'Liner' else 'log'},yaxis={'title': yaxis_column_name,'type': 'linear' if yaxis_type == 'Liner' else 'log'},margin={'l':40, 'b':40,'t':10,'r':0},hovermode='closest')}if __name__ == '__main__':app.run_server()

和单个输入区别不大,就是输入多了,要写的代码多了,写代码的时候可能会写错而已。如果有多个输出的需求,只要定义多个callback函数即可。

第二部分小节

Dash应用使用装饰器callback进行响应式编程。回调函数根据component_idcomponent_property从不同组件中获取输入值,然后其所装饰的函数进行计算后,将值返回装饰器,最后将计算结果输出到指定组件中。

这篇关于使用Dash开发交互式数据可视化网页--响应式编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088278

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se