使用Dash开发交互式数据可视化网页--页面布局

2024-06-23 21:08

本文主要是介绍使用Dash开发交互式数据可视化网页--页面布局,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dash应用布局

后续的操作前,需要安装如下Python包

pip install dash==0.20.0  # The core dash backend
pip install dash-renderer==0.11.2  # The dash front-end
pip install dash-html-components==0.8.0  # HTML components
pip install dash-core-components==0.18.1  # Supercharged components
pip install plotly --upgrade  # Plotly graphing library used in examples

使用Dash生成HTML

Dash应用包括两个部分,应用布局(layout)和数据交互(interactivity)。其中布局部分用来展示数据以及引导使用者使用。Dash提供了dash_core_componentsdash_html_components, 以类的方式对HTML和JS进行封装,便于调用。下面先构建一个最简单的布局

import dash
import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()app.layout = html.Div(children=[html.H1(children = 'Hello Dash'),html.Div(children = '''Dash: A web application frameworkd for Python.'''),dcc.Graph(id = 'example-graph',figure = {'dash':[{'x': [1,2,3], 'y':[4,1,2], 'type':'bar', 'name':'SF'},{'x': [1,2,3], 'y':[2,4,5], 'type':'bar', 'name':'Montrel'},],'layout':{'title':'Dash data Visualization'}})
])if __name__ == '__main__':app.run_server(debug=True, host='0.0.0.0')

首先用app=dash.Dash()创建了Dash应用的实例,这个实例可以通过app.run_server()运行。

其次这个应用的布局(layout)由html组件(html.Div等)和图形组件(dcc.Graph等)构成。其中基础的html标签来自于dash_html_components,而更加React.js库里的高级组件则是由dash_core_components提供。

最后的展示形式需要后期慢慢的调整, 比如说调整一下字体对齐, 字体颜色和背景颜色等

import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()colors = {'background':'#111111','text':'#7FDBFF'
}app.layout = html.Div(style={'backgroundColor':colors['background']},children=[html.H1(children = 'Hello Dash',style = {'textAlign':'center','color': colors['text']}),html.Div(children = '''Dash: A web application frameworkd for Python.''', style = {'textAlign':'center','color': colors['text']}),dcc.Graph(id = 'example-graph',figure = {'data':[{'x': [1,2,3], 'y':[4,1,2], 'type':'bar', 'name':'SF'},{'x': [1,2,3], 'y':[2,4,5], 'type':'bar', 'name':'Montreal'},],'layout':{'plot_bgcolor': colors['background'],'paper_bgcolor': colors['background'],'font':{'color': colors['text']},'title':'Dash data Visualization'}})
])if __name__ == '__main__':app.run_server(debug=True, host='0.0.0.0')

这里的html组件都设置了style,用来调整样式,

可视化

dash_core_components库中有一个Graph组件,它利用开源的JavaScript图形库--plotly.js进行交互式数据渲染。Graph里的figure参数等价于plotly.py里的figure参数,即任何plotly.js支持的图形都可以用dash_core_components调用。查看https://plot.ly/python/了解更多plotly.py的图形。

比如说这里可以基于Pandas的数据库创建散点图

import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pdapp = dash.Dash()df = pd.read_csv('https://gist.githubusercontent.com/chriddyp/' +'5d1ea79569ed194d432e56108a04d188/raw/' +'a9f9e8076b837d541398e999dcbac2b2826a81f8/'+'gdp-life-exp-2007.csv')plot = [dcc.Graph(id = 'life-exp-vs-GDP',figure = {'data':[go.Scatter(x=df[df['continent'] == i]['gdp per capita'],y=df[df['continent'] == i]['life expectancy'],text=df[df['continent'] == i]['country'],mode='markers',opacity=0.7,marker={'size':15,'line':{'width':0.5, 'color':'white'}},name = i) for i in df.continent.unique()],'layout': go.Layout(xaxis={'type':'log','title':'GDP per Capita'},yaxis={'title':'Life Expectancy'},margin={'l':40,'b':40,'t':10,'r':10},legend={'x':0, 'y':1},hovermode='closest')})]app.layout = html.Div(html.Div(children=[html.Div(className='col-md-4'),html.Div(plot,className='col-md-4')],className='row')
)# Append an externally hosted CSS stylesheet
my_css_url = "https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css"
app.css.append_css({"external_url": my_css_url
})# Append an externally hosted JS bundle
my_js_url = 'https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js'
app.scripts.append_script({"external_url": my_js_url
})if __name__ == '__main__':app.run_server(debug=True)

这部分代码将图形部分的代码从html组件中抽离出来,写完之后,再添加到html总体组件中。此外还增加了bootstrap的css样式。

Markdown语法

Dash的dash_html_components支持原生的HTML语句,而dash_core_componentsMarkdown提供了Markdown得渲染。

import dash
import dash_core_components as dcc
import dash_html_components as htmlapp = dash.Dash()markdown_text = '''
### Dash and MarkdownDash apps can be written in Markdown.
Dash uses the [CommonMark](http://commonmark.org/)
specification of Markdown.
Check out their [60 Second Markdown Tutorial](http://commonmark.org/help/)
if this is your first introduction to Markdown!
'''app.layout = html.Div([dcc.Markdown(children=markdown_text)
])if __name__ == '__main__':app.run_server(debug=True)

dash_core_components里不仅仅提供了Markdown, graphs这些图形组件,还支持下拉栏等其他使用工具,可在https://plot.ly/dash/dash-core-components进一步了解

小节

这部分主要是学习了Dash应用得layout. layout是不同组件的层级关系树,最后结果是html页面。html页面的HTML基本语法由dash_html_components提供,而高级的绘图和下拉栏等则是由dash_core_components提供.

参考资料:

  • https://plot.ly/dash/getting-started
  • https://plot.ly/dash/dash-core-components
  • https://plot.ly/dash/dash-html-components

这篇关于使用Dash开发交互式数据可视化网页--页面布局的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088277

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多