「Debug R」明明我用的是数据框,为啥运行结果有点不对劲

2024-06-23 20:38

本文主要是介绍「Debug R」明明我用的是数据框,为啥运行结果有点不对劲,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在「Debug R」有些你认为的报错不是报错(error),是警告(warnnings)里,我解决了一个使用者在 tibble 数据结构赋予行名出现的问题。

这次问题和上次类似,也是没有注意到自己用的数据结构其实不是普通的数据框了,只不过这次的问题的主角是 data.table

果子老师很喜欢用data.table的一个函数---fread, 它的读取速度非常快,而且使用非常方便,基本不怎么需要加参数,唯独有个问题要特别注意下,就是它的数据结构不是普通的数据框 data.frame,还是一个data.table

> library(data.table)
> write.csv(mtcars, "mtcars.csv")
> df <- fread("mtcars.csv")
> class(df)
[1] "data.table" "data.frame"

在大部分情况下,它和普通的数据框的表现的差不多,也可以有行名,但是用headtail是看不出来,必须要用rownames才行

> rownames(df)[1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15" "16" "17"
[18] "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
> rownames(df) <- paste0("Id", rownames(df))
> head(df)V1  mpg cyl disp  hp drat    wt  qsec vs am gear carb
1:         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
2:     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
3:        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
4:    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
5: Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
6:           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
> rownames(df)[1] "Id1"  "Id2"  "Id3"  "Id4"  "Id5"  "Id6"  "Id7"  "Id8"  "Id9"  "Id10" "Id11" "Id12"
[13] "Id13" "Id14" "Id15" "Id16" "Id17" "Id18" "Id19" "Id20" "Id21" "Id22" "Id23" "Id24"
[25] "Id25" "Id26" "Id27" "Id28" "Id29" "Id30" "Id31" "Id32"

而且在选取列的时候,也看起来没啥毛病

> df[1:2, c("V1","mpg")]V1 mpg
1:     Mazda RX4  21
2: Mazda RX4 Wag  21

一切看起来都挺美好的,直到你做了下面这个操作

>  df[, colnames(df)][1] "V1"   "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear" "carb"

为啥结果不是输出所有列呢,咋和mtcars[,colnames(mtcars)]结果居然不一样。

当然不一样了,因为data.table也有自己的一套数据处理思想,对于DT[i,j]而言,j表示的如何对列运算或直接筛选,如下,详见http://r-datatable.com,

# select|compute columns
DT[, v]                                     # v column (as vector)
DT[, list(v)]                               # v column (as data.table)
DT[, .(v)]                                  # same; .() is an alias for list()
DT[, sum(v)]                                # sum of column v, returned as vector
DT[, .(sum(v))]                             # same but return data.table
DT[, .(sv=sum(v))]                          # same but name column "sv"
DT[, .(v, v*2)]                             # return two column data.table
# select columns the data.frame way
DT[, 2]                                     # 2nd column, a data.table always
colNum = 2                                  
DT[, ..colNum]                              # same as DT[,2]; ..var => one-up
DT[["v"]]                                   # same as DT[,v] but lower overhead

也就是说,在 data.table里,df[, colnames(df)]的含义其实就是获取列名而已,而不是简单的先得到列名,然后根据列名选取列。

如果你要通过变量名选择列的话,你的代码要换种方式写

> rn <- colnames(df)
> df[, ..rn]

如果已经是data.table类,那么解决方法就是,要么用as.data.frame 把数据结构进行转换,要们就花点时间学习data.table的数据处理体系, 见<r-datatable.com>

但是对于之后想用datat.table::fread读取数据,那么参考评论区Tanyongjun的策略,设置data.table=F就会输出data.frame,比用as.data.frame要快。特别是数据较大的时候。

这篇关于「Debug R」明明我用的是数据框,为啥运行结果有点不对劲的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1088222

相关文章

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o