「Debug R」明明我用的是数据框,为啥运行结果有点不对劲

2024-06-23 20:38

本文主要是介绍「Debug R」明明我用的是数据框,为啥运行结果有点不对劲,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在「Debug R」有些你认为的报错不是报错(error),是警告(warnnings)里,我解决了一个使用者在 tibble 数据结构赋予行名出现的问题。

这次问题和上次类似,也是没有注意到自己用的数据结构其实不是普通的数据框了,只不过这次的问题的主角是 data.table

果子老师很喜欢用data.table的一个函数---fread, 它的读取速度非常快,而且使用非常方便,基本不怎么需要加参数,唯独有个问题要特别注意下,就是它的数据结构不是普通的数据框 data.frame,还是一个data.table

> library(data.table)
> write.csv(mtcars, "mtcars.csv")
> df <- fread("mtcars.csv")
> class(df)
[1] "data.table" "data.frame"

在大部分情况下,它和普通的数据框的表现的差不多,也可以有行名,但是用headtail是看不出来,必须要用rownames才行

> rownames(df)[1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15" "16" "17"
[18] "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
> rownames(df) <- paste0("Id", rownames(df))
> head(df)V1  mpg cyl disp  hp drat    wt  qsec vs am gear carb
1:         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
2:     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
3:        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
4:    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
5: Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
6:           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
> rownames(df)[1] "Id1"  "Id2"  "Id3"  "Id4"  "Id5"  "Id6"  "Id7"  "Id8"  "Id9"  "Id10" "Id11" "Id12"
[13] "Id13" "Id14" "Id15" "Id16" "Id17" "Id18" "Id19" "Id20" "Id21" "Id22" "Id23" "Id24"
[25] "Id25" "Id26" "Id27" "Id28" "Id29" "Id30" "Id31" "Id32"

而且在选取列的时候,也看起来没啥毛病

> df[1:2, c("V1","mpg")]V1 mpg
1:     Mazda RX4  21
2: Mazda RX4 Wag  21

一切看起来都挺美好的,直到你做了下面这个操作

>  df[, colnames(df)][1] "V1"   "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear" "carb"

为啥结果不是输出所有列呢,咋和mtcars[,colnames(mtcars)]结果居然不一样。

当然不一样了,因为data.table也有自己的一套数据处理思想,对于DT[i,j]而言,j表示的如何对列运算或直接筛选,如下,详见http://r-datatable.com,

# select|compute columns
DT[, v]                                     # v column (as vector)
DT[, list(v)]                               # v column (as data.table)
DT[, .(v)]                                  # same; .() is an alias for list()
DT[, sum(v)]                                # sum of column v, returned as vector
DT[, .(sum(v))]                             # same but return data.table
DT[, .(sv=sum(v))]                          # same but name column "sv"
DT[, .(v, v*2)]                             # return two column data.table
# select columns the data.frame way
DT[, 2]                                     # 2nd column, a data.table always
colNum = 2                                  
DT[, ..colNum]                              # same as DT[,2]; ..var => one-up
DT[["v"]]                                   # same as DT[,v] but lower overhead

也就是说,在 data.table里,df[, colnames(df)]的含义其实就是获取列名而已,而不是简单的先得到列名,然后根据列名选取列。

如果你要通过变量名选择列的话,你的代码要换种方式写

> rn <- colnames(df)
> df[, ..rn]

如果已经是data.table类,那么解决方法就是,要么用as.data.frame 把数据结构进行转换,要们就花点时间学习data.table的数据处理体系, 见<r-datatable.com>

但是对于之后想用datat.table::fread读取数据,那么参考评论区Tanyongjun的策略,设置data.table=F就会输出data.frame,比用as.data.frame要快。特别是数据较大的时候。

这篇关于「Debug R」明明我用的是数据框,为啥运行结果有点不对劲的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088222

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Java服务实现开启Debug远程调试

《Java服务实现开启Debug远程调试》文章介绍如何通过JVM参数开启Java服务远程调试,便于在线上排查问题,在IDEA中配置客户端连接,实现无需频繁部署的调试,提升效率... 目录一、背景二、相关图示说明三、具体操作步骤1、服务端配置2、客户端配置总结一、背景日常项目中,通常我们的代码都是部署到远程

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性