「Debug R」明明我用的是数据框,为啥运行结果有点不对劲

2024-06-23 20:38

本文主要是介绍「Debug R」明明我用的是数据框,为啥运行结果有点不对劲,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在「Debug R」有些你认为的报错不是报错(error),是警告(warnnings)里,我解决了一个使用者在 tibble 数据结构赋予行名出现的问题。

这次问题和上次类似,也是没有注意到自己用的数据结构其实不是普通的数据框了,只不过这次的问题的主角是 data.table

果子老师很喜欢用data.table的一个函数---fread, 它的读取速度非常快,而且使用非常方便,基本不怎么需要加参数,唯独有个问题要特别注意下,就是它的数据结构不是普通的数据框 data.frame,还是一个data.table

> library(data.table)
> write.csv(mtcars, "mtcars.csv")
> df <- fread("mtcars.csv")
> class(df)
[1] "data.table" "data.frame"

在大部分情况下,它和普通的数据框的表现的差不多,也可以有行名,但是用headtail是看不出来,必须要用rownames才行

> rownames(df)[1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12" "13" "14" "15" "16" "17"
[18] "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
> rownames(df) <- paste0("Id", rownames(df))
> head(df)V1  mpg cyl disp  hp drat    wt  qsec vs am gear carb
1:         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
2:     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
3:        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
4:    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
5: Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
6:           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
> rownames(df)[1] "Id1"  "Id2"  "Id3"  "Id4"  "Id5"  "Id6"  "Id7"  "Id8"  "Id9"  "Id10" "Id11" "Id12"
[13] "Id13" "Id14" "Id15" "Id16" "Id17" "Id18" "Id19" "Id20" "Id21" "Id22" "Id23" "Id24"
[25] "Id25" "Id26" "Id27" "Id28" "Id29" "Id30" "Id31" "Id32"

而且在选取列的时候,也看起来没啥毛病

> df[1:2, c("V1","mpg")]V1 mpg
1:     Mazda RX4  21
2: Mazda RX4 Wag  21

一切看起来都挺美好的,直到你做了下面这个操作

>  df[, colnames(df)][1] "V1"   "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear" "carb"

为啥结果不是输出所有列呢,咋和mtcars[,colnames(mtcars)]结果居然不一样。

当然不一样了,因为data.table也有自己的一套数据处理思想,对于DT[i,j]而言,j表示的如何对列运算或直接筛选,如下,详见http://r-datatable.com,

# select|compute columns
DT[, v]                                     # v column (as vector)
DT[, list(v)]                               # v column (as data.table)
DT[, .(v)]                                  # same; .() is an alias for list()
DT[, sum(v)]                                # sum of column v, returned as vector
DT[, .(sum(v))]                             # same but return data.table
DT[, .(sv=sum(v))]                          # same but name column "sv"
DT[, .(v, v*2)]                             # return two column data.table
# select columns the data.frame way
DT[, 2]                                     # 2nd column, a data.table always
colNum = 2                                  
DT[, ..colNum]                              # same as DT[,2]; ..var => one-up
DT[["v"]]                                   # same as DT[,v] but lower overhead

也就是说,在 data.table里,df[, colnames(df)]的含义其实就是获取列名而已,而不是简单的先得到列名,然后根据列名选取列。

如果你要通过变量名选择列的话,你的代码要换种方式写

> rn <- colnames(df)
> df[, ..rn]

如果已经是data.table类,那么解决方法就是,要么用as.data.frame 把数据结构进行转换,要们就花点时间学习data.table的数据处理体系, 见<r-datatable.com>

但是对于之后想用datat.table::fread读取数据,那么参考评论区Tanyongjun的策略,设置data.table=F就会输出data.frame,比用as.data.frame要快。特别是数据较大的时候。

这篇关于「Debug R」明明我用的是数据框,为啥运行结果有点不对劲的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088222

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock