使用SCALE分析单细胞ATAC-seq数据

2024-06-23 20:18

本文主要是介绍使用SCALE分析单细胞ATAC-seq数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCALE全称是Single-Cell ATAC-seq analysis vie Latent feature Extraction, 从名字中就能知道这个软件是通过隐特征提取的方式分析单细胞ATAC-seq数据。

在文章中,作者从开发者的角度列出了目前的scATAC-seq分析软件,chromVAR, scABC, cisTopic, scVI,发现每个软件都有一定的不足之处,而从我们软件使用者的角度,其实可以考虑都试试这些工具。

SCALE结合了深度生成模型(Depp Generative Models)变分自动编码器框架(Variational Autoencoder, VAE)与概率高斯混合模型(Gaussian Mixture Model, GMM)去学习隐特征,用于准确地鉴定scATAC-seq数据中的特征。

文章通过一张图来解释了软件的工作机制:

SCALE框架

SCALE将sc-ATAC-seq的输入数据x(Cells-by-Peaks矩阵)建模成一个联合分布,p(x,z,c),c是GMM组件中对应的预定义的K个聚类,z是一个隐变量,是细胞在所有peak中实际可能的值,用于后续的聚类和可视化。z通过$z = muz sigmaZ times epsilon$ 计算而得,公式里面的 $muz$ $sigmaz$ 是编码器网络从x中学习而得,$epsilon$ 则是从 $mathbb{N}(0,mathbf{I})$ 抽样而成。

从公式中我们还可以发现z其实和GMM的c有关,所以p(x,z,c)也可以写成P(x|z)p(z|c)p(c),而p(c)是K个预定义聚类分布的离散概率分布,p(z|c)服从混合高斯分布,而p(x|z)则是服从多变量伯努利分布(multivartiable Bernoulli distribution), 通过解码者网络建模而成。

当然从一个软件使用者的角度而言,我们不会去关心代码,也不会关心原理,我们更关心的是这个工具能做什么。SCALE能做以下的分析

  • SCALE可以对隐特征聚类识别细胞类群
  • SCALE可以降噪,恢复缺失的peak
  • SCALE能够区分批次效应和生物学细胞类群之间的差异

软件安装

推荐使用conda的方式进行软件安装(我测试过了,运行没有问题)

第一步:创建一个环境,名字就是SCALE,并且启动该环境

conda create -n SCALE python=3.6 pytorch
conda activate SCALE

第二步:从GitHub上克隆该项目

git clone git://github.com/jsxlei/SCALE.git

第三步:安装SCALE

cd SCALE
python setup.py install

之后分析的时候,只需要通过conda activate SCALE就能启动分析环境。

考虑后续要交互的读取数据和可视化,那么建议再安装一个Jupyter

conda install jupyter

软件使用

SCALE支持两类输入文件:

  • count矩阵,行为peak,列为barcode
  • 10X输出文件: count.mtx.gz, peak.tsv, barcode.tsv

我们以官方提供的Forebrain数据集为例进行介绍,因为这个数据相对于另外一个数据集Mouse Atlas小多了。

我们在服务器上新建一个文件夹,用于存放从 下载的数据

mkdir Forebrain

保证Forebrain有下载好的数据

$ ls Forebrain 
data.txt

之后运行程序

SCALE.py -d Forebrain/data.txt -k 8 --impute

软件运行步骤为:

  • 加载数据: Loading data
  • 模型训练: Training Model
  • 输出结果: Saving imputed data

其中模型训练这一步时间比较久,可以尝试用GPU加速(我是普通CPU服务器没有办法)。最终会在当前文件夹看到一个output文件夹,里面有如下内容:

  • imputed_data.txt: 每个细胞在每个特征的推断值,建议用`--binary`保存二进制格式
  • model.pt: 用于重复结果的模型文件,--pretrain参数能够读取该模型
  • feature.txt: 每个细胞的隐特征,用于聚类和可视化
  • cluster_assignments.txt: 两列,barcode和所属类群
  • tsne.txt, tsne.pdf: tSNE的坐标和PDF文件,坐标文件可以导入到R语言进行可视化

上面是命令行部分,下面则是Python环境进行交互式操作,输入jupyter notebook,之后在网页上打开

首先是导入各种Python库

import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from matplotlib import pyplot as plt
import seaborn as sns
from scale.plot import plot_embedding, plot_heatmap

然后加载分析结果,包括聚类信息和特征信息

y = pd.read_csv('output/cluster_assignments.txt', sep='\t', index_col=0, header=None)[1].values
feature = pd.read_csv('output/feature.txt', sep='\t', index_col=0, header=None)

通过热图展示不同聚类细胞之间的差异图

plot_heatmap(feature.T, y, figsize=(8, 3), cmap='RdBu_r', vmax=8, vmin=-8, center=0,ylabel='Feature dimension', yticklabels=np.arange(10) 1, cax_title='Feature value', legend_font=6, ncol=1,bbox_to_anchor=(1.1, 1.1), position=(0.92, 0.15, .08, .04))

heatmap

如果要矫正批次效应,可以通过根据feature的heatmap,去掉和batch相关的feature来实现

我们可以展示SCALE对原始数据纠正后的值(imputed data), 该结果也能提高chromVAR鉴定motif的效果

imputed = pd.read_csv('output/imputed_data.txt', sep='\t', index_col=0)

展示聚类特异性的peak, 分析由mat_specificity_scorecluster_specific完成

from scale.specifity import cluster_specific, mat_specificity_scorescore_mat = mat_specificity_score(imputed, y)
peak_index, peak_labels = cluster_specific(score_mat, np.unique(y), top=200)plot_heatmap(imputed.iloc[peak_index], y=y, row_labels=peak_labels, ncol=3, cmap='Reds', vmax=1, row_cluster=False, legend_font=6, cax_title='Peak Value',figsize=(8, 10), bbox_to_anchor=(0.4, 1.2), position=(0.8, 0.76, 0.1, 0.015))

聚类特异性peak

参数介绍

通过SCALE.py -h可以输出SCALE的所有可用参数

  • -d/--dataset: 单个文件矩阵应该指定文件路径,10X输出的多个文件则是文件目录
  • -k: 设定输出结果的聚类数
  • -o: 输出文件路径
  • --pretrain: 读取之前训练的模型
  • --lr: 修改起始学习速率, 默认是0.002,和模型训练有关
  • --batch_size: 批处理大小, 默认就行,不需要修改(和批次效应处理无关)
  • -g GPU: 选择GPU设备数目,非GPU服务器用不到
  • --seed: 初始随机数种子,通常在遇到nan缺失时考虑修改
  • -encode_dim, -decode_dim: 编码器和解码器的维度,通常也不需要修改
  • -latent 隐藏层维度
  • --low, --high: 过滤低质量的peak, 即出现比例高于或者低于某个阈值的peak,默认是0.01和0.9。作者推荐保留1万-3万的peak用于SCALE分析。如果数据质量很高,且peak数不多于10万,那么可以不过滤。
  • --min_peaks: 过滤低质量细胞,如果该细胞的peak低于阈值
  • log_transform: log2(x 1)的变换
  • --max_iter: 最大迭代数,默认是30000, 可以观察损失收敛的情况来修改,也就是训练模型这一步输出的信息
  • -weight_decay: 没有说明
  • --impute: 保存推断数据,默认开启
  • --binary: 推荐加上该参数,减少imputed data占用空间
  • --no_tsne: 不需要保存t-SNE结果
  • --reference: 参考细胞类型
  • -t: 如果输出矩阵是列为peak,行为barcode,用该参数进行转置

对于使用者而言,我们一般只用修改-k更改最后的聚类数,--low, --high, ---min_peaks来对原始数据进行过滤,以及加上--binary节约空间。

版权声明:本博客所有文章除特别声明外,均采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0) 进行许可。

扫码即刻交流

这篇关于使用SCALE分析单细胞ATAC-seq数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088169

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用