「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析

本文主要是介绍「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这一篇文章是回答知识星球中一位星友的提问,她的电脑内存有限,无法直接使用所有数据,只能分析部分数据。

数据来源: https://content.cruk.cam.ac.uk/jmlab/atlas_data.tar.gz 解压缩之后,得到下面数据

数据清单

其中raw_counts.mtx是以稀疏矩阵格式存放的表达量数据,文件为6.5G, 用普通的文本编辑器无法打开,我们可以用Linux命令行的less查看数据存放形式

稀疏矩阵

显然这种格式并不是给人类阅读的,它存放的是非零数据的位置及其具体数值。当然,我们也不需要读懂,只需要R语言或者其他编程语言能够加载即可。

R语言的Matrix包的readMM函数就能够读取该文件

mt <- Matrix::readMM("raw_counts.mtx")
dim(mt)
# [1]  29452 139331
# 行为基因,列为细胞

这一步时间非常的久,我差不多花了10分钟时间。同时占用内存也非常可观,直接占用了8G左右的内存,不到16G内存的电脑可能根本无法读取。

format(object.size(mt), units = "Mb")
# "7377.8 Mb"

稀疏矩阵其实和普通矩阵看起来差不多,除了在显示的时候用.来表示0.

查看部分信息

还有一点就是,对于这种量级的数据,我们无法使用R自带的as.data.frame或者as.matrix将其转成普通的数据库或者矩阵,它会直接报错。因此我也不建议对其进行数据转换。

我们发现这里的矩阵并没有行名和列名,这部分信息需要额外从其他文件中读取

bc <- read.table("barcodes.tsv")
genes <- read.table("genes.tsv", sep = "\t")
dim(bc)
#[1] 139331      1
dim(genes)
#[1] 29452     2

不难发现barcode的行数等于矩阵的列数, gene的行数等于矩阵的行数, 也就是说矩阵的列是细胞,行是基因。

row.names(mt) <- genes$V1
colnames(mt) <- bc$V1
查看部分信息

建议:将此处得到matrix保存为Rds格式,方便后续加载

saveRDS(mt, "raw_matrix.Rds")

接下来就是根据元信息来提取对应的细胞,我们以提取"Mesenchyme"细胞为例进行讲解

meta.info <- read.table("meta.tab",sep = "\t", header = TRUE)cell.info <- meta.info[meta.info$celltype == "Mesenchyme", "cell"]
cell.info <- cell.info[!is.na(cell.info)]mt.sml <- mt[, cell.info]
format(object.size(mt.sml), units = "Mb")
# "280.9 Mb"

代码的核心逻辑为提取出对应行的细胞名,然后根据细胞名提取矩阵中的对应列。

过滤后的细胞就可以用作后续分析。不过在开始分析之前,让我们先把原始的矩阵给删掉,因为它实在是太占用内存了。

rm(mt); gc()

除了用元信息进行过滤外,你还可以通过随机抽样,从原始数据中抽出部分细胞,这样子也能够在内存吃紧的情况进行后续分析。

这篇关于「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088132

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别