「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析

本文主要是介绍「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这一篇文章是回答知识星球中一位星友的提问,她的电脑内存有限,无法直接使用所有数据,只能分析部分数据。

数据来源: https://content.cruk.cam.ac.uk/jmlab/atlas_data.tar.gz 解压缩之后,得到下面数据

数据清单

其中raw_counts.mtx是以稀疏矩阵格式存放的表达量数据,文件为6.5G, 用普通的文本编辑器无法打开,我们可以用Linux命令行的less查看数据存放形式

稀疏矩阵

显然这种格式并不是给人类阅读的,它存放的是非零数据的位置及其具体数值。当然,我们也不需要读懂,只需要R语言或者其他编程语言能够加载即可。

R语言的Matrix包的readMM函数就能够读取该文件

mt <- Matrix::readMM("raw_counts.mtx")
dim(mt)
# [1]  29452 139331
# 行为基因,列为细胞

这一步时间非常的久,我差不多花了10分钟时间。同时占用内存也非常可观,直接占用了8G左右的内存,不到16G内存的电脑可能根本无法读取。

format(object.size(mt), units = "Mb")
# "7377.8 Mb"

稀疏矩阵其实和普通矩阵看起来差不多,除了在显示的时候用.来表示0.

查看部分信息

还有一点就是,对于这种量级的数据,我们无法使用R自带的as.data.frame或者as.matrix将其转成普通的数据库或者矩阵,它会直接报错。因此我也不建议对其进行数据转换。

我们发现这里的矩阵并没有行名和列名,这部分信息需要额外从其他文件中读取

bc <- read.table("barcodes.tsv")
genes <- read.table("genes.tsv", sep = "\t")
dim(bc)
#[1] 139331      1
dim(genes)
#[1] 29452     2

不难发现barcode的行数等于矩阵的列数, gene的行数等于矩阵的行数, 也就是说矩阵的列是细胞,行是基因。

row.names(mt) <- genes$V1
colnames(mt) <- bc$V1
查看部分信息

建议:将此处得到matrix保存为Rds格式,方便后续加载

saveRDS(mt, "raw_matrix.Rds")

接下来就是根据元信息来提取对应的细胞,我们以提取"Mesenchyme"细胞为例进行讲解

meta.info <- read.table("meta.tab",sep = "\t", header = TRUE)cell.info <- meta.info[meta.info$celltype == "Mesenchyme", "cell"]
cell.info <- cell.info[!is.na(cell.info)]mt.sml <- mt[, cell.info]
format(object.size(mt.sml), units = "Mb")
# "280.9 Mb"

代码的核心逻辑为提取出对应行的细胞名,然后根据细胞名提取矩阵中的对应列。

过滤后的细胞就可以用作后续分析。不过在开始分析之前,让我们先把原始的矩阵给删掉,因为它实在是太占用内存了。

rm(mt); gc()

除了用元信息进行过滤外,你还可以通过随机抽样,从原始数据中抽出部分细胞,这样子也能够在内存吃紧的情况进行后续分析。

这篇关于「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088132

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级