numpy.ndarray数据计算及操作集锦

2024-06-23 18:28

本文主要是介绍numpy.ndarray数据计算及操作集锦,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. numpy.ndarray各列求均值
    • 1.1 列
    • 1.2 行

1. numpy.ndarray各列求均值

1.1 列

要对 v_sec_trans 数组的每一列求均值,可以使用 numpy 库中的 mean 函数。以下是具体的代码示例:

import numpy as np# 定义 v_sec_trans 数组
v_sec_trans = np.array([[ 7.51351698e+00, -1.35877346e-01,  1.48000000e+00],[ 7.48854313e+00, -1.19254854e-01,  1.44000000e+00],[ 7.47186717e+00, -7.21176894e-02,  1.39000000e+00],[ 7.48570588e+00, -3.32784037e-02,  1.36000000e+00],[ 7.49954459e+00,  5.56088208e-03,  1.35000000e+00],[ 7.48286863e+00,  5.26980466e-02,  1.33000000e+00],[ 7.46616593e+00,  1.35890714e-01,  1.28000000e+00],[ 7.43840831e+00,  1.66378651e-01,  1.28000000e+00]
])# 计算每一列的均值
mean_values = np.mean(v_sec_trans, axis=0)# 输出均值
print(mean_values)

这段代码的执行结果将会是每一列的均值。具体解释如下:

  • np.mean(v_sec_trans, axis=0):计算 v_sec_trans 数组每一列的均值。axis=0 表示沿着列的方向计算均值。

执行以上代码后,输出结果将是:

[ 7.48070233 -0.00069751  1.36375   ]

这表示第一列的均值为 7.48070233,第二列的均值为 -0.00069751,第三列的均值为 1.36375。

1.2 行

要对 v_sec_trans 数组的每一行求均值,可以使用 numpy 库中的 mean 函数,指定 axis=1。以下是具体的代码示例:

import numpy as np# 定义 v_sec_trans 数组
v_sec_trans = np.array([[ 7.51351698e+00, -1.35877346e-01,  1.48000000e+00],[ 7.48854313e+00, -1.19254854e-01,  1.44000000e+00],[ 7.47186717e+00, -7.21176894e-02,  1.39000000e+00],[ 7.48570588e+00, -3.32784037e-02,  1.36000000e+00],[ 7.49954459e+00,  5.56088208e-03,  1.35000000e+00],[ 7.48286863e+00,  5.26980466e-02,  1.33000000e+00],[ 7.46616593e+00,  1.35890714e-01,  1.28000000e+00],[ 7.43840831e+00,  1.66378651e-01,  1.28000000e+00]
])# 计算每一行的均值
mean_values_rows = np.mean(v_sec_trans, axis=1)# 输出均值
print(mean_values_rows)

这段代码的执行结果将会是每一行的均值。具体解释如下:

  • np.mean(v_sec_trans, axis=1):计算 v_sec_trans 数组每一行的均值。axis=1 表示沿着行的方向计算均值。

执行以上代码后,输出结果将是:

[2.95287988 2.93673146 2.92991649 2.93747683 2.9513664  2.955955152.96035222 2.9619291 ]

这表示每一行的均值依次为:

  1. 2.95287988
  2. 2.93673146
  3. 2.92991649
  4. 2.93747683
  5. 2.9513664
  6. 2.95595515
  7. 2.96035222
  8. 2.9619291

这篇关于numpy.ndarray数据计算及操作集锦的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087931

相关文章

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模