“序列优化探究:最长上升子序列的算法发现与应用“

2024-06-23 18:04

本文主要是介绍“序列优化探究:最长上升子序列的算法发现与应用“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最长上升子序列

最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。

这是一个经典的动态规划问题。

假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

具体地,我们可以这样定义dp[i]:

for (int j = 0; j < i; j++)if nums[j] < nums[i]dp[i] = max(dp[i], dp[j] + 1)

其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。

下面是一个使用动态规划求解LIS问题的C++代码:

代码(动态规划)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列vector<int> dp(n, 1);// 从nums[1] 开始遍历整个数组for (int i = 1; i < n; i++) {// 从前往后比那里之前的元素for (int j = 0; j < i; j++) {// j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1);}}}// 状态数组中最大的值就是最长上升子序列的长度return *max_element(dp.begin(), dp.end());}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

首先定义了一个长度为 n 的 dp 数组,将其初始化为 1,因为每个元素本身都可以构成一个长度为 1 的上升子序列。

然后,用两个嵌套的循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

最后,我们返回dp数组中的最大值作为最长上升子序列的长度。

上述算法的时间复杂度为O(n^2),可以通过使用二分查找来将时间复杂度降为O(nlogn)。

具体来说,我们可以维护一个长度为 len 的子序列,其中 len 表示当前子序列的长度。

遍历所有的元素,如果当前元素比子序列中的最后一个元素还大,就将其添加到子序列的末尾,并将子序列长度加1。

否则,我们可以用二分查找找到子序列中第一个大于等于当前元素的位置,将该位置上的元素替换为当前元素,从而保证子序列仍然是上升的。

最终,子序列的长度就是最长上升子序列的长度。

下面是一个使用二分查找求解LIS问题的C++代码:

代码(二分优化)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 保存状态vector<int> dp;//依次遍历各个元素for (int i = 0; i < n; i++) {// 二分法找到第一个大于等于 nums[i] 的元素的位置int pos = lower_bound(dp.begin(), dp.end(), nums[i]) - dp.begin();// 如果没找到,就把 nums[i] 直接加入到 状态数组if (pos == dp.size()) {dp.push_back(nums[i]);} // 否则,用 nums[i] 替换该位置元素 else {dp[pos] = nums[i];}}// 状态数组的长度就是最长子序列的长度return dp.size();}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

定义了一个空的dp数组,表示当前最长上升子序列。

对于每个元素,可以用lower_bound函数找到dp数组中第一个大于等于当前元素的位置pos。

然后将该位置上的元素替换为当前元素。如果pos等于dp的长度,表示当前元素比子序列中的所有元素都大,因此可以将其添加到子序列的末尾。

最终,子序列的长度就是最长上升子序列的长度。

时间复杂度为O(nlogn),空间复杂度为O(n)。可以看到,使用二分查找算法的时间复杂度要比暴力算法低得多,因此在实际应用中更为常用。

Java代码

import java.util.*;
public class Main{public static void main(String[] args){Scanner scan = new  Scanner(System.in);int N = 1010;int[] f = new int[N]; //以i为结尾的数的上升子序列中最大值int[] a = new int[N]; //数列int n = scan.nextInt();for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++ ){// 以i为结尾的数的上升子序列中最大值,每个数最低的个数就是1,所以将每一个数一开始初始化成1f[i] = 1; //求以i为结尾的最长上升子序列,就是求他的f[i - 1] 的最长上升子序列加上1,就是i本身for(int j = 1 ; j < i ; j ++){if(a[i] > a[j])    // 枚举前面的数,如果前面比i这个数小的就加1,一直加到枚举到i - 1f[i]  = Math.max(f[i],f[j] + 1);}     }int res = 0;for(int i = 1 ; i <= n ; i ++ ){res = Math.max(res,f[i]);}System.out.println(res);}
}

类型题:怪盗基德的滑翔翼

题目描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

分析

怪盗基德可以从任意一个楼房出发,只能向低的楼房跳,倒着看就是最长上升子序列,同时他可以向两个方向跳,因此需要正反两个方向求最长上升子序列,也可以一个方向分别求上升和下降。

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N],a[N],d[N];
int k,n;int main()
{scanf("%d",&k);while(k--){scanf("%d",&n);// memset(f,1,sizeof(f));// memset(a,0,sizeof(a));for(int i=1;i<=n;i++){f[i] = 1;d[i] = 1;scanf("%d",&a[i]);}for(int i=1;i<=n;i++)for(int j=1;j<i;j++){if(a[j]<a[i])f[i] = max(f[i],f[j]+1);if(a[j]>a[i])d[i] = max(d[i],d[j]+1);}int res = 0;for(int i=1;i<=n;i++)res = max(res,max(f[i],d[i]));printf("%d\n",res);}return 0;}

这篇关于“序列优化探究:最长上升子序列的算法发现与应用“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087878

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima