“序列优化探究:最长上升子序列的算法发现与应用“

2024-06-23 18:04

本文主要是介绍“序列优化探究:最长上升子序列的算法发现与应用“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最长上升子序列

最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。

这是一个经典的动态规划问题。

假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

具体地,我们可以这样定义dp[i]:

for (int j = 0; j < i; j++)if nums[j] < nums[i]dp[i] = max(dp[i], dp[j] + 1)

其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。

下面是一个使用动态规划求解LIS问题的C++代码:

代码(动态规划)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列vector<int> dp(n, 1);// 从nums[1] 开始遍历整个数组for (int i = 1; i < n; i++) {// 从前往后比那里之前的元素for (int j = 0; j < i; j++) {// j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1);}}}// 状态数组中最大的值就是最长上升子序列的长度return *max_element(dp.begin(), dp.end());}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

首先定义了一个长度为 n 的 dp 数组,将其初始化为 1,因为每个元素本身都可以构成一个长度为 1 的上升子序列。

然后,用两个嵌套的循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

最后,我们返回dp数组中的最大值作为最长上升子序列的长度。

上述算法的时间复杂度为O(n^2),可以通过使用二分查找来将时间复杂度降为O(nlogn)。

具体来说,我们可以维护一个长度为 len 的子序列,其中 len 表示当前子序列的长度。

遍历所有的元素,如果当前元素比子序列中的最后一个元素还大,就将其添加到子序列的末尾,并将子序列长度加1。

否则,我们可以用二分查找找到子序列中第一个大于等于当前元素的位置,将该位置上的元素替换为当前元素,从而保证子序列仍然是上升的。

最终,子序列的长度就是最长上升子序列的长度。

下面是一个使用二分查找求解LIS问题的C++代码:

代码(二分优化)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 保存状态vector<int> dp;//依次遍历各个元素for (int i = 0; i < n; i++) {// 二分法找到第一个大于等于 nums[i] 的元素的位置int pos = lower_bound(dp.begin(), dp.end(), nums[i]) - dp.begin();// 如果没找到,就把 nums[i] 直接加入到 状态数组if (pos == dp.size()) {dp.push_back(nums[i]);} // 否则,用 nums[i] 替换该位置元素 else {dp[pos] = nums[i];}}// 状态数组的长度就是最长子序列的长度return dp.size();}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

定义了一个空的dp数组,表示当前最长上升子序列。

对于每个元素,可以用lower_bound函数找到dp数组中第一个大于等于当前元素的位置pos。

然后将该位置上的元素替换为当前元素。如果pos等于dp的长度,表示当前元素比子序列中的所有元素都大,因此可以将其添加到子序列的末尾。

最终,子序列的长度就是最长上升子序列的长度。

时间复杂度为O(nlogn),空间复杂度为O(n)。可以看到,使用二分查找算法的时间复杂度要比暴力算法低得多,因此在实际应用中更为常用。

Java代码

import java.util.*;
public class Main{public static void main(String[] args){Scanner scan = new  Scanner(System.in);int N = 1010;int[] f = new int[N]; //以i为结尾的数的上升子序列中最大值int[] a = new int[N]; //数列int n = scan.nextInt();for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++ ){// 以i为结尾的数的上升子序列中最大值,每个数最低的个数就是1,所以将每一个数一开始初始化成1f[i] = 1; //求以i为结尾的最长上升子序列,就是求他的f[i - 1] 的最长上升子序列加上1,就是i本身for(int j = 1 ; j < i ; j ++){if(a[i] > a[j])    // 枚举前面的数,如果前面比i这个数小的就加1,一直加到枚举到i - 1f[i]  = Math.max(f[i],f[j] + 1);}     }int res = 0;for(int i = 1 ; i <= n ; i ++ ){res = Math.max(res,f[i]);}System.out.println(res);}
}

类型题:怪盗基德的滑翔翼

题目描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

分析

怪盗基德可以从任意一个楼房出发,只能向低的楼房跳,倒着看就是最长上升子序列,同时他可以向两个方向跳,因此需要正反两个方向求最长上升子序列,也可以一个方向分别求上升和下降。

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N],a[N],d[N];
int k,n;int main()
{scanf("%d",&k);while(k--){scanf("%d",&n);// memset(f,1,sizeof(f));// memset(a,0,sizeof(a));for(int i=1;i<=n;i++){f[i] = 1;d[i] = 1;scanf("%d",&a[i]);}for(int i=1;i<=n;i++)for(int j=1;j<i;j++){if(a[j]<a[i])f[i] = max(f[i],f[j]+1);if(a[j]>a[i])d[i] = max(d[i],d[j]+1);}int res = 0;for(int i=1;i<=n;i++)res = max(res,max(f[i],d[i]));printf("%d\n",res);}return 0;}

这篇关于“序列优化探究:最长上升子序列的算法发现与应用“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087878

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱