海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow

本文主要是介绍海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物(‘蛤蜊’, ‘珊瑚’, ‘螃蟹’, ‘海豚’, ‘鳗鱼’, ‘水母’, ‘龙虾’, ‘海蛞蝓’, ‘章鱼’, ‘水獭’, ‘企鹅’, ‘河豚’, ‘魔鬼鱼’, ‘海胆’, ‘海马’, ‘海豹’, ‘鲨鱼’, ‘虾’, ‘鱿鱼’, ‘海星’, ‘海龟’, ‘鲸鱼’)数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。

二、系统效果图片展示

img_06_23_14_45_26

img_06_23_14_45_35

img_06_23_14_45_45

img_06_23_14_45_54

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/mbopflgmz5ck2lyi

四、卷积神经网络算法介绍

卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,因其在处理图像数据方面的卓越性能而广受关注。CNN的主要特点包括:

  1. 局部连接和权值共享:通过卷积层中的滤波器(或称为卷积核),CNN能够捕捉图像中的局部特征。每个滤波器在图像上滑动,通过局部连接和权值共享的机制,显著减少了参数数量,提高了计算效率。
  2. 层次化特征表示:CNN通过多层卷积和池化操作,从低层次到高层次逐步提取图像的特征。低层次特征如边缘和纹理,高层次特征如形状和物体。
  3. 平移不变性:池化层(如最大池化和平均池化)通过对局部区域的下采样,使得模型对图像的平移和局部变形具有一定的鲁棒性。

在图像识别方面,CNN具有广泛的应用,如图像分类、目标检测、语义分割等。以下是一些常见的CNN模型:

  1. LeNet-5:最早的CNN之一,由Yann LeCun等人提出,用于手写数字识别。
  2. AlexNet:2012年ImageNet竞赛冠军,极大推动了深度学习的发展。
  3. VGGNet:通过使用较小的3x3卷积核和更深的网络结构,提高了图像分类精度。
  4. GoogLeNet(Inception):采用Inception模块,减少计算量的同时增加了网络的深度和宽度。
  5. ResNet:引入残差模块,解决了深层网络中的梯度消失问题。

以下是一个简单的示例代码,使用Keras搭建一个CNN模型进行图像分类:


import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()# 归一化
train_images, test_images = train_images / 255.0, test_images / 255.0# 搭建CNN模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f'\nTest accuracy: {test_acc}')

这段代码演示了如何使用Keras构建和训练一个简单的CNN模型,对CIFAR-10数据集进行分类。通过多层卷积和池化操作,模型可以逐步提取图像特征,实现高效的图像分类任务。

这篇关于海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1087842

相关文章

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解