Python中的爬虫实战:豆瓣图书爬虫

2024-06-23 15:36

本文主要是介绍Python中的爬虫实战:豆瓣图书爬虫,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python是当今最热门的编程语言之一,在不同的领域都得到了广泛的应用,如数据科学、人工智能、网络安全等。其中,python在网络爬虫领域表现出色,许多企业和个人利用python进行数据采集和分析。本篇文章将介绍如何使用python爬取豆瓣图书信息,帮助读者初步了解python网络爬虫的实现方法和技术。

首先,对于豆瓣图书信息爬虫,我们需要用到Python中的两个重要的库:urllib和beautifulsoup4。其中,urllib库主要用于网络请求和数据读取,而beautifulsoup4库则可用于解析HTML和XML等结构化文档,从而提取需要的信息。在使用这些库之前,我们需要先安装它们,使用pip命令即可完成安装。安装完成后,就可以开始我们的实战了。

1.确定爬取目标

在使用Python进行爬虫时,首先需要明确爬取目标。对于本篇文章而言,我们的目标是爬取豆瓣图书的基本信息,如书名、作者、出版社、出版日期、评分等。此外,我们还需要爬取多页图书信息。

2.分析HTML结构

确定了爬取目标之后,我们需要进一步分析豆瓣图书的HTML结构,以便确定所需信息的位置和特征。我们可以使用Chrome或Firefox等浏览器自带的开发者工具来查看页面源代码。通过观察HTML结构,我们可以找到需要爬取的标签和属性,进而编写Python代码进行实现。

3.编写代码

接下来,我们在Python中编写豆瓣图书爬虫代码。代码的核心是:

  • 发送网络请求并获取HTML页面;
  • 解析HTML文档,提取所需信息;
  • 存储数据。

下面是完整代码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

import urllib.request

from bs4 import BeautifulSoup

url = 'https://book.douban.com/top250'

books = []

def get_html(url):

    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.131 Safari/537.36'}

    req = urllib.request.Request(url, headers=headers)

    response = urllib.request.urlopen(req)

    html = response.read().decode('utf-8')

    return html

def parse_html(html):

    soup = BeautifulSoup(html,'html.parser')

    book_list_soup = soup.find('div', attrs={'class': 'article'})

    for book_soup in book_list_soup.find_all('table'):

        book_title_soup = book_soup.find('div', attrs={'class': 'pl2'})

        book_title_link = book_title_soup.find('a')

        book_title = book_title_link.get('title')

        book_url = book_title_link.get('href')

        book_info_soup = book_soup.find('p', attrs={'class': 'pl'})

        book_info = book_info_soup.string.strip()

        book_rating_num_soup = book_soup.find('span', attrs={'class': 'rating_nums'})

        book_rating_num = book_rating_num_soup.string.strip()

        book_rating_people_num_span_soup = book_soup.find('span', attrs={'class': 'pl'})

        book_rating_people_num = book_rating_people_num_span_soup.string.strip()[1:-4]

        book_author_and_publish_soup = book_soup.find('p',attrs={'class':'pl'}).next_sibling.string.strip()

        book_author_and_publish = book_author_and_publish_soup.split('/')

        book_author = book_author_and_publish[0]

        book_publish = book_author_and_publish[-3]

        book_year = book_author_and_publish[-2]

        books.append({

        'title': book_title,

        'url': book_url,

        'info': book_info,

        'author':book_author,

        'publish':book_publish,

        'year':book_year,

        'rating_num':book_rating_num,

        'rating_people_num':book_rating_people_num

        })

def save_data():

    with open('douban_top250.txt','w',encoding='utf-8') as f:

        for book in books:

            f.write('书名:{0}

'.format(book['title']))

            f.write('链接:{0}

'.format(book['url']))

            f.write('信息:{0}

'.format(book['info']))

            f.write('作者:{0}

'.format(book['author']))

            f.write('出版社:{0}

'.format(book['publish']))

            f.write('出版年份:{0}

'.format(book['year']))

            f.write('评分:{0}

'.format(book['rating_num']))

            f.write('评分人数:{0}

'.format(book['rating_people_num']))

if __name__ == '__main__':

    for i in range(10):

        start = i*25

        url = 'https://book.douban.com/top250?start={0}'.format(start)

        html = get_html(url)

        parse_html(html)

    save_data()

代码解析:

首先,我们定义一个主网址url和一个空列表books(用于存储图书信息)。接着,我们编写get_html函数,用于发送请求并获取HTML页面。在该函数中,我们设置了请求头headers,以模拟浏览器发送请求,从而避免被网站屏蔽。我们使用urllib库的Request方法,将请求头和网址封装到一个对象中,然后使用urllib库的urlopen方法,发送网络请求并获取页面,最后使用read和decode方法,将页面内容转换成utf-8格式的字符串。

我们编写parse_html函数,用于解析HTML文档,提取所需信息。在该函数中,我们使用beautifulsoup4库的find和find_all方法,查找HTML页面中符合要求的标签和属性。具体地,我们通过观察豆瓣图书的HTML结构,找到了每本图书所在的table标签和对应的书名、链接、信息和评分等信息,并编写了提取这些数据的代码。其中,我们使用了strip和split方法,对字符串进行处理,以去除多余空白字符和分割字符串。

最后,我们编写了save_data函数,用于将提取的图书信息存储到本地文件中。在该函数中,我们使用Python内置函数open,打开一个文本文件,以写入模式写入文件内容,并使用format方法,将每本图书的相关信息格式化为字符串,写入文件。注意,我们需要在文件名后面加上编码方式encoding='utf-8',以确保文件内容不会出现乱码。

在主程序中,我们使用for循环,爬取豆瓣图书的前250本图书。为此,我们需要每页爬取25本图书,共爬取10页。在每个循环中,我们根据当前页码计算出所需的url,并调用get_html函数,获取HTML页面。接着,我们将页面传递给parse_html函数,解析页面并提取所需信息。最后,我们调用save_data函数,将所有图书信息保存到本地文件中。

4.运行代码

在完成代码编写后,我们可以在命令行(Windows系统)或终端(MacOS或Linux系统)中进入代码所在目录,并执行命令python3 爬虫脚本名.py,即可运行该Python网络爬虫。在程序运行期间,我们可以观察程序的输出信息,以判断程序是否正确执行。程序执行完毕后,我们可以检查本地文件douban_top250.txt,确认是否已成功保存数据。

总结

通过本篇文章的介绍,我们初步了解了Python网络爬虫的实现方法和技术。具体而言,我们使用Python中的urllib和beautifulsoup4库,针对豆瓣图书网站的HTML结构,编写了爬取豆瓣图书信息的Python程序,成功实现了数据采集和存储。此外,在实际应用中,我们需要了解一些网络爬虫的注意事项,如不要过度频繁地向同一网站发送请求,以避免被封IP地址。

这篇关于Python中的爬虫实战:豆瓣图书爬虫的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087560

相关文章

Python FastAPI实现JWT校验的完整指南

《PythonFastAPI实现JWT校验的完整指南》在现代Web开发中,构建安全的API接口是开发者必须面对的核心挑战之一,本文将深入探讨如何基于FastAPI实现JWT(JSONWebToken... 目录一、JWT认证的核心原理二、项目初始化与环境配置三、安全密码处理机制四、JWT令牌的生成与验证五、

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Python使用Turtle实现精确计时工具

《Python使用Turtle实现精确计时工具》这篇文章主要为大家详细介绍了Python如何使用Turtle实现精确计时工具,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录功能特点使用方法程序架构设计代码详解窗口和画笔创建时间和状态显示更新计时器控制逻辑计时器重置功能事件

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失