Spark算子:RDD基本转换操作(6)–zip、zipPartitions

2024-06-23 13:18

本文主要是介绍Spark算子:RDD基本转换操作(6)–zip、zipPartitions,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

zip

      def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)]

       zip函数用于将两个RDD组合成Key/Value形式的RDD,这里默认两个RDD的partition数量以及元素数量都相同,否则会抛出异常。

scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at :21scala> var rdd1 = sc.makeRDD(1 to 5,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at :21scala> var rdd2 = sc.makeRDD(Seq("A","B","C","D","E"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[2] at makeRDD at :21scala> rdd1.zip(rdd2).collect
res0: Array[(Int, String)] = Array((1,A), (2,B), (3,C), (4,D), (5,E))           scala> rdd2.zip(rdd1).collect
res1: Array[(String, Int)] = Array((A,1), (B,2), (C,3), (D,4), (E,5))scala> var rdd3 = sc.makeRDD(Seq("A","B","C","D","E"),3)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at makeRDD at :21scala> rdd1.zip(rdd3).collect
java.lang.IllegalArgumentException: Can't zip RDDs with unequal numbers of partitions
//如果两个RDD分区数不同,则抛出异常

zipPartitions

      zipPartitions函数将多个RDD按照partition组合成为新的RDD,该函数需要组合的RDD具有相同的分区数,但对于每个分区内的元素数量没有要求。

      该函数有好几种实现,可分为三类:

      参数是一个RDD
            def zipPartitions[B, V](rdd2: RDD[B])(f: (Iterator[T], Iterator[B]) => Iterator[V])(implicit arg0: ClassTag[B], arg1:       ClassTag[V]): RDD[V]

            def zipPartitions[B, V](rdd2: RDD[B], preservesPartitioning: Boolean)(f: (Iterator[T], Iterator[B]) => Iterator[V])      (implicit arg0: ClassTag[B], arg1: ClassTag[V]): RDD[V]

      这两个区别就是参数preservesPartitioning,是否保留父RDD的partitioner分区信息

      映射方法f参数为两个RDD的迭代器。

scala> var rdd1 = sc.makeRDD(1 to 5,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[22] at makeRDD at :21scala> var rdd2 = sc.makeRDD(Seq("A","B","C","D","E"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[23] at makeRDD at :21//rdd1两个分区中元素分布:
scala> rdd1.mapPartitionsWithIndex{|         (x,iter) => {|           var result = List[String]()|             while(iter.hasNext){|               result ::= ("part_" + x + "|" + iter.next())|             }|             result.iterator|            |         }|       }.collect
res17: Array[String] = Array(part_0|2, part_0|1, part_1|5, part_1|4, part_1|3)//rdd2两个分区中元素分布
scala> rdd2.mapPartitionsWithIndex{|         (x,iter) => {|           var result = List[String]()|             while(iter.hasNext){|               result ::= ("part_" + x + "|" + iter.next())|             }|             result.iterator|            |         }|       }.collect
res18: Array[String] = Array(part_0|B, part_0|A, part_1|E, part_1|D, part_1|C)//rdd1和rdd2做zipPartition
scala> rdd1.zipPartitions(rdd2){|       (rdd1Iter,rdd2Iter) => {|         var result = List[String]()|         while(rdd1Iter.hasNext && rdd2Iter.hasNext) {|           result::=(rdd1Iter.next() + "_" + rdd2Iter.next())|         }|         result.iterator|       }|     }.collect
res19: Array[String] = Array(2_B, 1_A, 5_E, 4_D, 3_C)


      参数是两个RDD
            def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C])(f: (Iterator[T], Iterator[B], Iterator[C]) => Iterator[V])(implicit       arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]

            def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean)(f: (Iterator[T],

      Iterator[B],Iterator[C]) => Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]


      用法同上面,只不过该函数参数为两个RDD,映射方法f输入参数为两个RDD的迭代器。

scala> var rdd1 = sc.makeRDD(1 to 5,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at makeRDD at :21scala> var rdd2 = sc.makeRDD(Seq("A","B","C","D","E"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[28] at makeRDD at :21scala> var rdd3 = sc.makeRDD(Seq("a","b","c","d","e"),2)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[29] at makeRDD at :21//rdd3中个分区元素分布
scala> rdd3.mapPartitionsWithIndex{|         (x,iter) => {|           var result = List[String]()|             while(iter.hasNext){|               result ::= ("part_" + x + "|" + iter.next())|             }|             result.iterator|            |         }|       }.collect
res21: Array[String] = Array(part_0|b, part_0|a, part_1|e, part_1|d, part_1|c)//三个RDD做zipPartitions
scala> var rdd4 = rdd1.zipPartitions(rdd2,rdd3){|       (rdd1Iter,rdd2Iter,rdd3Iter) => {|         var result = List[String]()|         while(rdd1Iter.hasNext && rdd2Iter.hasNext && rdd3Iter.hasNext) {|           result::=(rdd1Iter.next() + "_" + rdd2Iter.next() + "_" + rdd3Iter.next())|         }|         result.iterator|       }|     }
rdd4: org.apache.spark.rdd.RDD[String] = ZippedPartitionsRDD3[33] at zipPartitions at :27scala> rdd4.collect
res23: Array[String] = Array(2_B_b, 1_A_a, 5_E_e, 4_D_d, 3_C_c)

       参数是三个RDD
      def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D])(f: (Iterator[T], Iterator[B], Iterator[C],      Iterator[D]) => Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3: ClassTag[V]): RDD[V]

      def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean)(f: (Iterator[T],      Iterator[B], Iterator[C], Iterator[D]) => Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3:      ClassTag[V]): RDD[V]

      用法同上面,只不过这里又多了个一个RDD而已。

      转载请注明:Spark算子:RDD基本转换操作(6)–zip、zipPartitions

这篇关于Spark算子:RDD基本转换操作(6)–zip、zipPartitions的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087263

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

springboot上传zip包并解压至服务器nginx目录方式

《springboot上传zip包并解压至服务器nginx目录方式》:本文主要介绍springboot上传zip包并解压至服务器nginx目录方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录springboot上传zip包并解压至服务器nginx目录1.首先需要引入zip相关jar包2.然