主成分分析PCA详解(一)

2024-06-23 13:18
文章标签 分析 详解 成分 pca

本文主要是介绍主成分分析PCA详解(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对理解PCA非常好的一篇文章,留着以防以后忘记

原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun

降维的必要性

1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。

2.高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%。

3.过多的变量会妨碍查找规律的建立。

4.仅在变量层面上分析可能会忽略变量之间的潜在联系。例如几个预测变量可能落入仅反映数据某一方面特征的一个组内。

降维的目的:

1.减少预测变量的个数

2.确保这些变量是相互独立的

3.提供一个框架来解释结果

降维的方法有:主成分分析、因子分析、用户自定义复合等。

 

PCA(Principal Component Analysis)不仅仅是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式。

PCA把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的m个特征互不相关。从旧特征到新特征的映射捕获数据中的固有变异性。

预备知识

样本X和样本Y的协方差(Covariance):

协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。

Cov(X,X)就是X的方差(Variance).

当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是。比如对于3维数据(x,y,z),计算它的协方差就是:

,则称是A的特征值,X是对应的特征向量。实际上可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得X的长度发生了变化,缩放比例就是相应的特征值

当A是n阶可逆矩阵时,A与P-1Ap相似,相似矩阵具有相同的特征值。

特别地,当A是对称矩阵时,A的奇异值等于A的特征值,存在正交矩阵Q(Q-1=QT),使得:

对A进行奇异值分解就能求出所有特征值和Q矩阵。

     D是由特征值组成的对角矩阵

由特征值和特征向量的定义知,Q的列向量就是A的特征向量。

Jama包

Jama包是用于基本线性代数运算的java包,提供矩阵的cholesky分解、LUD分解、QR分解、奇异值分解,以及PCA中要用到的特征值分解,此外可以计算矩阵的乘除法、矩阵的范数和条件数、解线性方程组等。

PCA过程

1.特征中心化。即每一维的数据都减去该维的均值。这里的“维”指的就是一个特征(或属性),变换之后每一维的均值都变成了0。

很多数据挖掘的教材上都会讲到鹫尾花的例子,本文就拿它来做计算。原始数据是150×4的矩阵A:

<span style="font-size:14px;font-weight: normal;">5.1     3.5     1.4     0.2
4.9     3.0     1.4     0.2
4.7     3.2     1.3     0.2
4.6     3.1     1.5     0.2
5.0     3.6     1.4     0.2
5.4     3.9     1.7     0.4
4.6     3.4     1.4     0.3
5.0     3.4     1.5     0.2
4.4     2.9     1.4     0.2
4.9     3.1     1.5     0.1
5.4     3.7     1.5     0.2
4.8     3.4     1.6     0.2
4.8     3.0     1.4     0.1
4.3     3.0     1.1     0.1
5.8     4.0     1.2     0.2
5.7     4.4     1.5     0.4
5.4     3.9     1.3     0.4
5.1     3.5     1.4     0.3
5.7     3.8     1.7     0.3
5.1     3.8     1.5     0.3
5.4     3.4     1.7     0.2
5.1     3.7     1.5     0.4
4.6     3.6     1.0     0.2
5.1     3.3     1.7     0.5
4.8     3.4     1.9     0.2
5.0     3.0     1.6     0.2
5.0     3.4     1.6     0.4
5.2     3.5     1.5     0.2
5.2     3.4     1.4     0.2
4.7     3.2     1.6     0.2
4.8     3.1     1.6     0.2
5.4     3.4     1.5     0.4
5.2     4.1     1.5     0.1
5.5     4.2     1.4     0.2
4.9     3.1     1.5     0.1
5.0     3.2     1.2     0.2
5.5     3.5     1.3     0.2
4.9     3.1     1.5     0.1
4.4     3.0     1.3     0.2
5.1     3.4     1.5     0.2
5.0     3.5     1.3     0.3
4.5     2.3     1.3     0.3
4.4     3.2     1.3     0.2
5.0     3.5     1.6     0.6
5.1     3.8     1.9     0.4
4.8     3.0     1.4     0.3
5.1     3.8     1.6     0.2
4.6     3.2     1.4     0.2
5.3     3.7     1.5     0.2
5.0     3.3     1.4     0.2
7.0     3.2     4.7     1.4
6.4     3.2     4.5     1.5
6.9     3.1     4.9     1.5
5.5     2.3     4.0     1.3
6.5     2.8     4.6     1.5
5.7     2.8     4.5     1.3
6.3     3.3     4.7     1.6
4.9     2.4     3.3     1.0
6.6     2.9     4.6     1.3
5.2     2.7     3.9     1.4
5.0     2.0     3.5     1.0
5.9     3.0     4.2     1.5
6.0     2.2     4.0     1.0
6.1     2.9     4.7     1.4
5.6     2.9     3.6     1.3
6.7     3.1     4.4     1.4
5.6     3.0     4.5     1.5
5.8     2.7     4.1     1.0
6.2     2.2     4.5     1.5
5.6     2.5     3.9     1.1
5.9     3.2     4.8     1.8
6.1     2.8     4.0     1.3
6.3     2.5     4.9     1.5
6.1     2.8     4.7     1.2
6.4     2.9     4.3     1.3
6.6     3.0     4.4     1.4
6.8     2.8     4.8     1.4
6.7     3.0     5.0     1.7
6.0     2.9     4.5     1.5
5.7     2.6     3.5     1.0
5.5     2.4     3.8     1.1
5.5     2.4     3.7     1.0
5.8     2.7     3.9     1.2
6.0     2.7     5.1     1.6
5.4     3.0     4.5     1.5
6.0     3.4     4.5     1.6
6.7     3.1     4.7     1.5
6.3     2.3     4.4     1.3
5.6     3.0     4.1     1.3
5.5     2.5     4.0     1.3
5.5     2.6     4.4     1.2
6.1     3.0     4.6     1.4
5.8     2.6     4.0     1.2
5.0     2.3     3.3     1.0
5.6     2.7     4.2     1.3
5.7     3.0     4.2     1.2
5.7     2.9     4.2     1.3
6.2     2.9     4.3     1.3
5.1     2.5     3.0     1.1
5.7     2.8     4.1     1.3
6.3     3.3     6.0     2.5
5.8     2.7     5.1     1.9
7.1     3.0     5.9     2.1
6.3     2.9     5.6     1.8
6.5     3.0     5.8     2.2
7.6     3.0     6.6     2.1
4.9     2.5     4.5     1.7
7.3     2.9     6.3     1.8
6.7     2.5     5.8     1.8
7.2     3.6     6.1     2.5
6.5     3.2     5.1     2.0
6.4     2.7     5.3     1.9
6.8     3.0     5.5     2.1
5.7     2.5     5.0     2.0
5.8     2.8     5.1     2.4
6.4     3.2     5.3     2.3
6.5     3.0     5.5     1.8
7.7     3.8     6.7     2.2
7.7     2.6     6.9     2.3
6.0     2.2     5.0     1.5
6.9     3.2     5.7     2.3
5.6     2.8     4.9     2.0
7.7     2.8     6.7     2.0
6.3     2.7     4.9     1.8
6.7     3.3     5.7     2.1
7.2     3.2     6.0     1.8
6.2     2.8     4.8     1.8
6.1     3.0     4.9     1.8
6.4     2.8     5.6     2.1
7.2     3.0     5.8     1.6
7.4     2.8     6.1     1.9
7.9     3.8     6.4     2.0
6.4     2.8     5.6     2.2
6.3     2.8     5.1     1.5
6.1     2.6     5.6     1.4
7.7     3.0     6.1     2.3
6.3     3.4     5.6     2.4
6.4     3.1     5.5     1.8
6.0     3.0     4.8     1.8
6.9     3.1     5.4     2.1
6.7     3.1     5.6     2.4
6.9     3.1     5.1     2.3
5.8     2.7     5.1     1.9
6.8     3.2     5.9     2.3
6.7     3.3     5.7     2.5
6.7     3.0     5.2     2.3
6.3     2.5     5.0     1.9
6.5     3.0     5.2     2.0
6.2     3.4     5.4     2.3
5.9     3.0     5.1     1.8</span>

每一列减去该列均值后,得到矩阵B:

-0.743333       0.446       -2.35867        -0.998667      
-0.943333       -0.054      -2.35867        -0.998667      
-1.14333        0.146       -2.45867        -0.998667      
-1.24333        0.046       -2.25867        -0.998667      
-0.843333       0.546       -2.35867        -0.998667      
-0.443333       0.846       -2.05867        -0.798667      
-1.24333        0.346       -2.35867        -0.898667      
-0.843333       0.346       -2.25867        -0.998667      
-1.44333        -0.154      -2.35867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-0.443333       0.646       -2.25867        -0.998667      
-1.04333        0.346       -2.15867        -0.998667      
-1.04333        -0.054      -2.35867        -1.09867       
-1.54333        -0.054      -2.65867        -1.09867       
-0.0433333      0.946       -2.55867        -0.998667      
-0.143333       1.346       -2.25867        -0.798667      
-0.443333       0.846       -2.45867        -0.798667      
-0.743333       0.446       -2.35867        -0.898667      
-0.143333       0.746       -2.05867        -0.898667      
-0.743333       0.746       -2.25867        -0.898667      
-0.443333       0.346       -2.05867        -0.998667      
-0.743333       0.646       -2.25867        -0.798667      
-1.24333        0.546       -2.75867        -0.998667      
-0.743333       0.246       -2.05867        -0.698667      
-1.04333        0.346       -1.85867        -0.998667      
-0.843333       -0.054      -2.15867        -0.998667      
-0.843333       0.346       -2.15867        -0.798667      
-0.643333       0.446       -2.25867        -0.998667      
-0.643333       0.346       -2.35867        -0.998667      
-1.14333        0.146       -2.15867        -0.998667      
-1.04333        0.046       -2.15867        -0.998667      
-0.443333       0.346       -2.25867        -0.798667      
-0.643333       1.046       -2.25867        -1.09867       
-0.343333       1.146       -2.35867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-0.843333       0.146       -2.55867        -0.998667      
-0.343333       0.446       -2.45867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-1.44333        -0.054      -2.45867        -0.998667      
-0.743333       0.346       -2.25867        -0.998667      
-0.843333       0.446       -2.45867        -0.898667      
-1.34333        -0.754      -2.45867        -0.898667      
-1.44333        0.146       -2.45867        -0.998667      
-0.843333       0.446       -2.15867        -0.598667      
-0.743333       0.746       -1.85867        -0.798667      
-1.04333        -0.054      -2.35867        -0.898667      
-0.743333       0.746       -2.15867        -0.998667      
-1.24333        0.146       -2.35867        -0.998667      
-0.543333       0.646       -2.25867        -0.998667      
-0.843333       0.246       -2.35867        -0.998667      
1.15667     0.146       0.941333        0.201333       
0.556667        0.146       0.741333        0.301333       
1.05667     0.046       1.14133     0.301333       
-0.343333       -0.754      0.241333        0.101333       
0.656667        -0.254      0.841333        0.301333       
-0.143333       -0.254      0.741333        0.101333       
0.456667        0.246       0.941333        0.401333       
-0.943333       -0.654      -0.458667       -0.198667      
0.756667        -0.154      0.841333        0.101333       
-0.643333       -0.354      0.141333        0.201333       
-0.843333       -1.054      -0.258667       -0.198667      
0.0566667       -0.054      0.441333        0.301333       
0.156667        -0.854      0.241333        -0.198667      
0.256667        -0.154      0.941333        0.201333       
-0.243333       -0.154      -0.158667       0.101333       
0.856667        0.046       0.641333        0.201333       
-0.243333       -0.054      0.741333        0.301333       
-0.0433333      -0.354      0.341333        -0.198667      
0.356667        -0.854      0.741333        0.301333       
-0.243333       -0.554      0.141333        -0.0986667     
0.0566667       0.146       1.04133     0.601333       
0.256667        -0.254      0.241333        0.101333       
0.456667        -0.554      1.14133     0.301333       
0.256667        -0.254      0.941333        0.00133333     
0.556667        -0.154      0.541333        0.101333       
0.756667        -0.054      0.641333        0.201333       
0.956667        -0.254      1.04133     0.201333       
0.856667        -0.054      1.24133     0.501333       
0.156667        -0.154      0.741333        0.301333       
-0.143333       -0.454      -0.258667       -0.198667      
-0.343333       -0.654      0.0413333       -0.0986667     
-0.343333       -0.654      -0.0586667      -0.198667      
-0.0433333      -0.354      0.141333        0.00133333     
0.156667        -0.354      1.34133     0.401333       
-0.443333       -0.054      0.741333        0.301333       
0.156667        0.346       0.741333        0.401333       
0.856667        0.046       0.941333        0.301333       
0.456667        -0.754      0.641333        0.101333       
-0.243333       -0.054      0.341333        0.101333       
-0.343333       -0.554      0.241333        0.101333       
-0.343333       -0.454      0.641333        0.00133333     
0.256667        -0.054      0.841333        0.201333       
-0.0433333      -0.454      0.241333        0.00133333     
-0.843333       -0.754      -0.458667       -0.198667      
-0.243333       -0.354      0.441333        0.101333       
-0.143333       -0.054      0.441333        0.00133333     
-0.143333       -0.154      0.441333        0.101333       
0.356667        -0.154      0.541333        0.101333       
-0.743333       -0.554      -0.758667       -0.0986667     
-0.143333       -0.254      0.341333        0.101333       
0.456667        0.246       2.24133     1.30133    
-0.0433333      -0.354      1.34133     0.701333       
1.25667     -0.054      2.14133     0.901333       
0.456667        -0.154      1.84133     0.601333       
0.656667        -0.054      2.04133     1.00133    
1.75667     -0.054      2.84133     0.901333       
-0.943333       -0.554      0.741333        0.501333       
1.45667     -0.154      2.54133     0.601333       
0.856667        -0.554      2.04133     0.601333       
1.35667     0.546       2.34133     1.30133    
0.656667        0.146       1.34133     0.801333       
0.556667        -0.354      1.54133     0.701333       
0.956667        -0.054      1.74133     0.901333       
-0.143333       -0.554      1.24133     0.801333       
-0.0433333      -0.254      1.34133     1.20133    
0.556667        0.146       1.54133     1.10133    
0.656667        -0.054      1.74133     0.601333       
1.85667     0.746       2.94133     1.00133    
1.85667     -0.454      3.14133     1.10133    
0.156667        -0.854      1.24133     0.301333       
1.05667     0.146       1.94133     1.10133    
-0.243333       -0.254      1.14133     0.801333       
1.85667     -0.254      2.94133     0.801333       
0.456667        -0.354      1.14133     0.601333       
0.856667        0.246       1.94133     0.901333       
1.35667     0.146       2.24133     0.601333       
0.356667        -0.254      1.04133     0.601333       
0.256667        -0.054      1.14133     0.601333       
0.556667        -0.254      1.84133     0.901333       
1.35667     -0.054      2.04133     0.401333       
1.55667     -0.254      2.34133     0.701333       
2.05667     0.746       2.64133     0.801333       
0.556667        -0.254      1.84133     1.00133    
0.456667        -0.254      1.34133     0.301333       
0.256667        -0.454      1.84133     0.201333       
1.85667     -0.054      2.34133     1.10133    
0.456667        0.346       1.84133     1.20133    
0.556667        0.046       1.74133     0.601333       
0.156667        -0.054      1.04133     0.601333       
1.05667     0.046       1.64133     0.901333       
0.856667        0.046       1.84133     1.20133    
1.05667     0.046       1.34133     1.10133    
-0.0433333      -0.354      1.34133     0.701333       
0.956667        0.146       2.14133     1.10133    
0.856667        0.246       1.94133     1.30133    
0.856667        -0.054      1.44133     1.10133    
0.456667        -0.554      1.24133     0.701333       
0.656667        -0.054      1.44133     0.801333       
0.356667        0.346       1.64133     1.10133    
0.0566667       -0.054      1.34133     0.601333   

2.计算B的协方差矩阵C:

<span style="font-weight: normal;">0.685694        -0.0392685      1.27368     0.516904       
-0.0392685      0.188004        -0.321713       -0.117981      
1.27368     -0.321713       3.11318     1.29639    
0.516904        -0.117981       1.29639     0.582414 </span>

3.计算协方差矩阵C的特征值和特征向量。

C=V*S*V-1
S=

4.2248414     0       0       0 
0          0.24224437  0          0 
0          0       0.078524387   0 
0          0       0        0.023681839

V=

0.36158919   0.65654382   -0.58100304   0.3172364 
-0.082268924    0.72970845    0.596429220       -0.3240827 
0.85657212  -0.17576972 0.  072535217    -0.47971643 
0.35884438    -0.074704743    0.54904125    0.75113489

4.选取大的特征值对应的特征向量,得到新的数据集。

特征值是由大到小排列的,前两个特征值的和已经超过了所有特征值之和的97%。我们取前两个特征值对应的特征向量,得到一个4×2的矩阵M。令A'150×2=A150×4M4×2,这样我们就把150×4的数据A集映射成了150×2的数据集A',特征由4个减到了2个。
A'=
<span style="font-weight: normal;">2.8271335      5.6413345     
2.7959501      5.1451715     
2.6215213      5.1773814     
2.7649037      5.0036022     
2.7827477      5.648651      
3.2314432      6.0625092     
2.6904502      5.2326213     
2.8848587      5.4851323     
2.6233824      4.7439288     
2.837496       5.2080359     
3.0048137      5.9666624     
2.898198       5.3362466     
2.7239067      5.0869876     
2.2861405      4.8114466     
2.867797       6.5009233     
3.127471       6.6594805     
2.8888143      6.132817      
2.8630179      5.633864      
3.3122624      6.1939719     
2.9239945      5.8351996     
3.2008088      5.7125959     
2.9681058      5.7547583     
2.2954831      5.4563413     
3.2082122      5.4202505     
3.1551697      5.2835156     
3.0034234      5.1756719     
3.0422848      5.4526144     
2.9489496      5.6894119     
2.8715193      5.634018      
2.8784929      5.1246505     
2.9228787      5.117334      
3.1012632      5.7328089     
2.8637038      6.1347075     
2.9141809      6.4147479     
2.837496       5.2080359     
2.6443408      5.3919215     
2.8861119      5.921529      
2.837496       5.2080359     
2.5294983      4.8344766     
2.9210176      5.5507867     
2.7412018      5.5857866     
2.6591299      4.3818646     
2.5130445      4.9804183     
3.1058267      5.5106443     
3.3025077      5.7574212     
2.7956756      5.0720467     
2.9737672      5.8250931     
2.6710196      5.0941501     
2.9686547      5.901008      
2.8074283      5.4297384     
6.7961349      6.0001695     
6.4437514      5.6339266     
6.9754017      5.8189198     
5.6923082      4.4891254     
6.5984751      5.3901207     
6.1517776      4.8974035     
6.6065644      5.5986187     
4.759874       4.3136202     
6.5546382      5.5436868     
5.5011511      4.5941521     
5.0002549      4.0522372     
6.0224389      5.2124439     
5.7736764      4.7668379     
6.4953853      5.1903675     
5.3364769      5.0629127     
6.4389134      5.7829664     
6.1709338      4.9627499     
5.7458813      4.9828064     
6.4537025      4.7729094     
5.5545872      4.7332394     
6.6275817      5.2305124     
5.8681272      5.2479059     
6.8078095      4.9871684     
6.4318433      5.1323376     
6.2253487      5.465109      
6.4109813      5.6443412     
6.8423818      5.5594003     
7.0687368      5.5821223     
6.3237964      5.1523966     
5.204006       4.949643      
5.440998       4.6121911     
5.3194564      4.6372386     
5.6463357      5.0030194     
6.8900779      4.8935226     
6.098616       4.8314411     
6.3185463      5.5097803     
6.7317694      5.722765      
6.3242084      4.9440526     
5.7565361      5.0479987     
5.6758544      4.6350671     
5.9743719      4.6452005     
6.4015012      5.2809153     
5.7402198      4.9124716     
4.8042598      4.3063037     
5.866874       4.8115092     
5.8424678      5.1035466     
5.8865791      5.0231053     
6.1530309      5.3338002     
4.6028777      4.5631602     
5.8091488      4.9677114     
8.0430681      5.3028838     
6.9254133      4.7398024     
8.1278252      5.6566652     
7.4821558      5.1336016     
7.8610989      5.2728454     
8.9082203      5.8618983     
6.0307247      4.123374      
8.4433454      5.6671066     
7.8310134      5.0691818     
8.4294749      6.0951088     
7.1732758      5.5567668     
7.3136813      5.0985747     
7.6767196      5.5300099     
6.8559354      4.5383128     
7.0966086      4.7754209     
7.4160846      5.4335471     
7.4605895      5.3554582     
9.0001057      6.486272      
9.3060273      5.5679974     
6.8096707      4.5537158     
7.939508       5.6915111     
6.7094386      4.7091479     
9.0106057      5.7715045     
6.8990091      5.1106987     
7.7871944      5.6481141     
8.1255342      5.8730957     
6.7689661      5.1355922     
6.8020106      5.1983025     
7.6341949      5.1038737     
7.8989047      5.7772489     
8.3523013      5.6874736     
8.743683       6.6852526     
7.6700793      5.0964032     
6.9544433      5.170927      
7.2909809      4.8132622     
8.587862       6.0004966     
7.6563279      5.453633      
7.4162037      5.3627746     
6.6801944      5.1502251     
7.6189944      5.6862121     
7.8256443      5.497338      
7.4337916      5.7240021     
6.9254133      4.7398024     
8.0746635      5.5907028     
7.9307322      5.6182322     
7.4553579      5.5021455     
7.0370045      4.9397096     
7.2753867      5.3932482     
7.4129702      5.430603      
6.9010071      5.0318398</span>

每个样本正好是二维的,画在平面坐标系中如图:

鹫尾花数据集共分为3类花(前50个样本为一类,中间50个样本为一类,后50个样本为一类),从上图可以看到把数据集映射到2维后分类会更容易进行,直观上看已经是线性可分的了,下面我们用自组织映射网络对其进行聚类。

当然我们已知了有3类,所以在设计SOFM网络时,我把竞争层节点数设为3,此时的聚类结果是前50个样本聚为一类,后100个样本聚为一类。当把竞争层节点数改为4时,仅第2类中的3个样本被误分到了第3类中,整体精度达98%!

主成分分析PCA详解(一)
主成分分析PCA详解(二)

这篇关于主成分分析PCA详解(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087259

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash