主成分分析PCA详解(一)

2024-06-23 13:18
文章标签 分析 详解 成分 pca

本文主要是介绍主成分分析PCA详解(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对理解PCA非常好的一篇文章,留着以防以后忘记

原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun

降维的必要性

1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。

2.高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%。

3.过多的变量会妨碍查找规律的建立。

4.仅在变量层面上分析可能会忽略变量之间的潜在联系。例如几个预测变量可能落入仅反映数据某一方面特征的一个组内。

降维的目的:

1.减少预测变量的个数

2.确保这些变量是相互独立的

3.提供一个框架来解释结果

降维的方法有:主成分分析、因子分析、用户自定义复合等。

 

PCA(Principal Component Analysis)不仅仅是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式。

PCA把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的m个特征互不相关。从旧特征到新特征的映射捕获数据中的固有变异性。

预备知识

样本X和样本Y的协方差(Covariance):

协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。

Cov(X,X)就是X的方差(Variance).

当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是。比如对于3维数据(x,y,z),计算它的协方差就是:

,则称是A的特征值,X是对应的特征向量。实际上可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得X的长度发生了变化,缩放比例就是相应的特征值

当A是n阶可逆矩阵时,A与P-1Ap相似,相似矩阵具有相同的特征值。

特别地,当A是对称矩阵时,A的奇异值等于A的特征值,存在正交矩阵Q(Q-1=QT),使得:

对A进行奇异值分解就能求出所有特征值和Q矩阵。

     D是由特征值组成的对角矩阵

由特征值和特征向量的定义知,Q的列向量就是A的特征向量。

Jama包

Jama包是用于基本线性代数运算的java包,提供矩阵的cholesky分解、LUD分解、QR分解、奇异值分解,以及PCA中要用到的特征值分解,此外可以计算矩阵的乘除法、矩阵的范数和条件数、解线性方程组等。

PCA过程

1.特征中心化。即每一维的数据都减去该维的均值。这里的“维”指的就是一个特征(或属性),变换之后每一维的均值都变成了0。

很多数据挖掘的教材上都会讲到鹫尾花的例子,本文就拿它来做计算。原始数据是150×4的矩阵A:

<span style="font-size:14px;font-weight: normal;">5.1     3.5     1.4     0.2
4.9     3.0     1.4     0.2
4.7     3.2     1.3     0.2
4.6     3.1     1.5     0.2
5.0     3.6     1.4     0.2
5.4     3.9     1.7     0.4
4.6     3.4     1.4     0.3
5.0     3.4     1.5     0.2
4.4     2.9     1.4     0.2
4.9     3.1     1.5     0.1
5.4     3.7     1.5     0.2
4.8     3.4     1.6     0.2
4.8     3.0     1.4     0.1
4.3     3.0     1.1     0.1
5.8     4.0     1.2     0.2
5.7     4.4     1.5     0.4
5.4     3.9     1.3     0.4
5.1     3.5     1.4     0.3
5.7     3.8     1.7     0.3
5.1     3.8     1.5     0.3
5.4     3.4     1.7     0.2
5.1     3.7     1.5     0.4
4.6     3.6     1.0     0.2
5.1     3.3     1.7     0.5
4.8     3.4     1.9     0.2
5.0     3.0     1.6     0.2
5.0     3.4     1.6     0.4
5.2     3.5     1.5     0.2
5.2     3.4     1.4     0.2
4.7     3.2     1.6     0.2
4.8     3.1     1.6     0.2
5.4     3.4     1.5     0.4
5.2     4.1     1.5     0.1
5.5     4.2     1.4     0.2
4.9     3.1     1.5     0.1
5.0     3.2     1.2     0.2
5.5     3.5     1.3     0.2
4.9     3.1     1.5     0.1
4.4     3.0     1.3     0.2
5.1     3.4     1.5     0.2
5.0     3.5     1.3     0.3
4.5     2.3     1.3     0.3
4.4     3.2     1.3     0.2
5.0     3.5     1.6     0.6
5.1     3.8     1.9     0.4
4.8     3.0     1.4     0.3
5.1     3.8     1.6     0.2
4.6     3.2     1.4     0.2
5.3     3.7     1.5     0.2
5.0     3.3     1.4     0.2
7.0     3.2     4.7     1.4
6.4     3.2     4.5     1.5
6.9     3.1     4.9     1.5
5.5     2.3     4.0     1.3
6.5     2.8     4.6     1.5
5.7     2.8     4.5     1.3
6.3     3.3     4.7     1.6
4.9     2.4     3.3     1.0
6.6     2.9     4.6     1.3
5.2     2.7     3.9     1.4
5.0     2.0     3.5     1.0
5.9     3.0     4.2     1.5
6.0     2.2     4.0     1.0
6.1     2.9     4.7     1.4
5.6     2.9     3.6     1.3
6.7     3.1     4.4     1.4
5.6     3.0     4.5     1.5
5.8     2.7     4.1     1.0
6.2     2.2     4.5     1.5
5.6     2.5     3.9     1.1
5.9     3.2     4.8     1.8
6.1     2.8     4.0     1.3
6.3     2.5     4.9     1.5
6.1     2.8     4.7     1.2
6.4     2.9     4.3     1.3
6.6     3.0     4.4     1.4
6.8     2.8     4.8     1.4
6.7     3.0     5.0     1.7
6.0     2.9     4.5     1.5
5.7     2.6     3.5     1.0
5.5     2.4     3.8     1.1
5.5     2.4     3.7     1.0
5.8     2.7     3.9     1.2
6.0     2.7     5.1     1.6
5.4     3.0     4.5     1.5
6.0     3.4     4.5     1.6
6.7     3.1     4.7     1.5
6.3     2.3     4.4     1.3
5.6     3.0     4.1     1.3
5.5     2.5     4.0     1.3
5.5     2.6     4.4     1.2
6.1     3.0     4.6     1.4
5.8     2.6     4.0     1.2
5.0     2.3     3.3     1.0
5.6     2.7     4.2     1.3
5.7     3.0     4.2     1.2
5.7     2.9     4.2     1.3
6.2     2.9     4.3     1.3
5.1     2.5     3.0     1.1
5.7     2.8     4.1     1.3
6.3     3.3     6.0     2.5
5.8     2.7     5.1     1.9
7.1     3.0     5.9     2.1
6.3     2.9     5.6     1.8
6.5     3.0     5.8     2.2
7.6     3.0     6.6     2.1
4.9     2.5     4.5     1.7
7.3     2.9     6.3     1.8
6.7     2.5     5.8     1.8
7.2     3.6     6.1     2.5
6.5     3.2     5.1     2.0
6.4     2.7     5.3     1.9
6.8     3.0     5.5     2.1
5.7     2.5     5.0     2.0
5.8     2.8     5.1     2.4
6.4     3.2     5.3     2.3
6.5     3.0     5.5     1.8
7.7     3.8     6.7     2.2
7.7     2.6     6.9     2.3
6.0     2.2     5.0     1.5
6.9     3.2     5.7     2.3
5.6     2.8     4.9     2.0
7.7     2.8     6.7     2.0
6.3     2.7     4.9     1.8
6.7     3.3     5.7     2.1
7.2     3.2     6.0     1.8
6.2     2.8     4.8     1.8
6.1     3.0     4.9     1.8
6.4     2.8     5.6     2.1
7.2     3.0     5.8     1.6
7.4     2.8     6.1     1.9
7.9     3.8     6.4     2.0
6.4     2.8     5.6     2.2
6.3     2.8     5.1     1.5
6.1     2.6     5.6     1.4
7.7     3.0     6.1     2.3
6.3     3.4     5.6     2.4
6.4     3.1     5.5     1.8
6.0     3.0     4.8     1.8
6.9     3.1     5.4     2.1
6.7     3.1     5.6     2.4
6.9     3.1     5.1     2.3
5.8     2.7     5.1     1.9
6.8     3.2     5.9     2.3
6.7     3.3     5.7     2.5
6.7     3.0     5.2     2.3
6.3     2.5     5.0     1.9
6.5     3.0     5.2     2.0
6.2     3.4     5.4     2.3
5.9     3.0     5.1     1.8</span>

每一列减去该列均值后,得到矩阵B:

-0.743333       0.446       -2.35867        -0.998667      
-0.943333       -0.054      -2.35867        -0.998667      
-1.14333        0.146       -2.45867        -0.998667      
-1.24333        0.046       -2.25867        -0.998667      
-0.843333       0.546       -2.35867        -0.998667      
-0.443333       0.846       -2.05867        -0.798667      
-1.24333        0.346       -2.35867        -0.898667      
-0.843333       0.346       -2.25867        -0.998667      
-1.44333        -0.154      -2.35867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-0.443333       0.646       -2.25867        -0.998667      
-1.04333        0.346       -2.15867        -0.998667      
-1.04333        -0.054      -2.35867        -1.09867       
-1.54333        -0.054      -2.65867        -1.09867       
-0.0433333      0.946       -2.55867        -0.998667      
-0.143333       1.346       -2.25867        -0.798667      
-0.443333       0.846       -2.45867        -0.798667      
-0.743333       0.446       -2.35867        -0.898667      
-0.143333       0.746       -2.05867        -0.898667      
-0.743333       0.746       -2.25867        -0.898667      
-0.443333       0.346       -2.05867        -0.998667      
-0.743333       0.646       -2.25867        -0.798667      
-1.24333        0.546       -2.75867        -0.998667      
-0.743333       0.246       -2.05867        -0.698667      
-1.04333        0.346       -1.85867        -0.998667      
-0.843333       -0.054      -2.15867        -0.998667      
-0.843333       0.346       -2.15867        -0.798667      
-0.643333       0.446       -2.25867        -0.998667      
-0.643333       0.346       -2.35867        -0.998667      
-1.14333        0.146       -2.15867        -0.998667      
-1.04333        0.046       -2.15867        -0.998667      
-0.443333       0.346       -2.25867        -0.798667      
-0.643333       1.046       -2.25867        -1.09867       
-0.343333       1.146       -2.35867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-0.843333       0.146       -2.55867        -0.998667      
-0.343333       0.446       -2.45867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-1.44333        -0.054      -2.45867        -0.998667      
-0.743333       0.346       -2.25867        -0.998667      
-0.843333       0.446       -2.45867        -0.898667      
-1.34333        -0.754      -2.45867        -0.898667      
-1.44333        0.146       -2.45867        -0.998667      
-0.843333       0.446       -2.15867        -0.598667      
-0.743333       0.746       -1.85867        -0.798667      
-1.04333        -0.054      -2.35867        -0.898667      
-0.743333       0.746       -2.15867        -0.998667      
-1.24333        0.146       -2.35867        -0.998667      
-0.543333       0.646       -2.25867        -0.998667      
-0.843333       0.246       -2.35867        -0.998667      
1.15667     0.146       0.941333        0.201333       
0.556667        0.146       0.741333        0.301333       
1.05667     0.046       1.14133     0.301333       
-0.343333       -0.754      0.241333        0.101333       
0.656667        -0.254      0.841333        0.301333       
-0.143333       -0.254      0.741333        0.101333       
0.456667        0.246       0.941333        0.401333       
-0.943333       -0.654      -0.458667       -0.198667      
0.756667        -0.154      0.841333        0.101333       
-0.643333       -0.354      0.141333        0.201333       
-0.843333       -1.054      -0.258667       -0.198667      
0.0566667       -0.054      0.441333        0.301333       
0.156667        -0.854      0.241333        -0.198667      
0.256667        -0.154      0.941333        0.201333       
-0.243333       -0.154      -0.158667       0.101333       
0.856667        0.046       0.641333        0.201333       
-0.243333       -0.054      0.741333        0.301333       
-0.0433333      -0.354      0.341333        -0.198667      
0.356667        -0.854      0.741333        0.301333       
-0.243333       -0.554      0.141333        -0.0986667     
0.0566667       0.146       1.04133     0.601333       
0.256667        -0.254      0.241333        0.101333       
0.456667        -0.554      1.14133     0.301333       
0.256667        -0.254      0.941333        0.00133333     
0.556667        -0.154      0.541333        0.101333       
0.756667        -0.054      0.641333        0.201333       
0.956667        -0.254      1.04133     0.201333       
0.856667        -0.054      1.24133     0.501333       
0.156667        -0.154      0.741333        0.301333       
-0.143333       -0.454      -0.258667       -0.198667      
-0.343333       -0.654      0.0413333       -0.0986667     
-0.343333       -0.654      -0.0586667      -0.198667      
-0.0433333      -0.354      0.141333        0.00133333     
0.156667        -0.354      1.34133     0.401333       
-0.443333       -0.054      0.741333        0.301333       
0.156667        0.346       0.741333        0.401333       
0.856667        0.046       0.941333        0.301333       
0.456667        -0.754      0.641333        0.101333       
-0.243333       -0.054      0.341333        0.101333       
-0.343333       -0.554      0.241333        0.101333       
-0.343333       -0.454      0.641333        0.00133333     
0.256667        -0.054      0.841333        0.201333       
-0.0433333      -0.454      0.241333        0.00133333     
-0.843333       -0.754      -0.458667       -0.198667      
-0.243333       -0.354      0.441333        0.101333       
-0.143333       -0.054      0.441333        0.00133333     
-0.143333       -0.154      0.441333        0.101333       
0.356667        -0.154      0.541333        0.101333       
-0.743333       -0.554      -0.758667       -0.0986667     
-0.143333       -0.254      0.341333        0.101333       
0.456667        0.246       2.24133     1.30133    
-0.0433333      -0.354      1.34133     0.701333       
1.25667     -0.054      2.14133     0.901333       
0.456667        -0.154      1.84133     0.601333       
0.656667        -0.054      2.04133     1.00133    
1.75667     -0.054      2.84133     0.901333       
-0.943333       -0.554      0.741333        0.501333       
1.45667     -0.154      2.54133     0.601333       
0.856667        -0.554      2.04133     0.601333       
1.35667     0.546       2.34133     1.30133    
0.656667        0.146       1.34133     0.801333       
0.556667        -0.354      1.54133     0.701333       
0.956667        -0.054      1.74133     0.901333       
-0.143333       -0.554      1.24133     0.801333       
-0.0433333      -0.254      1.34133     1.20133    
0.556667        0.146       1.54133     1.10133    
0.656667        -0.054      1.74133     0.601333       
1.85667     0.746       2.94133     1.00133    
1.85667     -0.454      3.14133     1.10133    
0.156667        -0.854      1.24133     0.301333       
1.05667     0.146       1.94133     1.10133    
-0.243333       -0.254      1.14133     0.801333       
1.85667     -0.254      2.94133     0.801333       
0.456667        -0.354      1.14133     0.601333       
0.856667        0.246       1.94133     0.901333       
1.35667     0.146       2.24133     0.601333       
0.356667        -0.254      1.04133     0.601333       
0.256667        -0.054      1.14133     0.601333       
0.556667        -0.254      1.84133     0.901333       
1.35667     -0.054      2.04133     0.401333       
1.55667     -0.254      2.34133     0.701333       
2.05667     0.746       2.64133     0.801333       
0.556667        -0.254      1.84133     1.00133    
0.456667        -0.254      1.34133     0.301333       
0.256667        -0.454      1.84133     0.201333       
1.85667     -0.054      2.34133     1.10133    
0.456667        0.346       1.84133     1.20133    
0.556667        0.046       1.74133     0.601333       
0.156667        -0.054      1.04133     0.601333       
1.05667     0.046       1.64133     0.901333       
0.856667        0.046       1.84133     1.20133    
1.05667     0.046       1.34133     1.10133    
-0.0433333      -0.354      1.34133     0.701333       
0.956667        0.146       2.14133     1.10133    
0.856667        0.246       1.94133     1.30133    
0.856667        -0.054      1.44133     1.10133    
0.456667        -0.554      1.24133     0.701333       
0.656667        -0.054      1.44133     0.801333       
0.356667        0.346       1.64133     1.10133    
0.0566667       -0.054      1.34133     0.601333   

2.计算B的协方差矩阵C:

<span style="font-weight: normal;">0.685694        -0.0392685      1.27368     0.516904       
-0.0392685      0.188004        -0.321713       -0.117981      
1.27368     -0.321713       3.11318     1.29639    
0.516904        -0.117981       1.29639     0.582414 </span>

3.计算协方差矩阵C的特征值和特征向量。

C=V*S*V-1
S=

4.2248414     0       0       0 
0          0.24224437  0          0 
0          0       0.078524387   0 
0          0       0        0.023681839

V=

0.36158919   0.65654382   -0.58100304   0.3172364 
-0.082268924    0.72970845    0.596429220       -0.3240827 
0.85657212  -0.17576972 0.  072535217    -0.47971643 
0.35884438    -0.074704743    0.54904125    0.75113489

4.选取大的特征值对应的特征向量,得到新的数据集。

特征值是由大到小排列的,前两个特征值的和已经超过了所有特征值之和的97%。我们取前两个特征值对应的特征向量,得到一个4×2的矩阵M。令A'150×2=A150×4M4×2,这样我们就把150×4的数据A集映射成了150×2的数据集A',特征由4个减到了2个。
A'=
<span style="font-weight: normal;">2.8271335      5.6413345     
2.7959501      5.1451715     
2.6215213      5.1773814     
2.7649037      5.0036022     
2.7827477      5.648651      
3.2314432      6.0625092     
2.6904502      5.2326213     
2.8848587      5.4851323     
2.6233824      4.7439288     
2.837496       5.2080359     
3.0048137      5.9666624     
2.898198       5.3362466     
2.7239067      5.0869876     
2.2861405      4.8114466     
2.867797       6.5009233     
3.127471       6.6594805     
2.8888143      6.132817      
2.8630179      5.633864      
3.3122624      6.1939719     
2.9239945      5.8351996     
3.2008088      5.7125959     
2.9681058      5.7547583     
2.2954831      5.4563413     
3.2082122      5.4202505     
3.1551697      5.2835156     
3.0034234      5.1756719     
3.0422848      5.4526144     
2.9489496      5.6894119     
2.8715193      5.634018      
2.8784929      5.1246505     
2.9228787      5.117334      
3.1012632      5.7328089     
2.8637038      6.1347075     
2.9141809      6.4147479     
2.837496       5.2080359     
2.6443408      5.3919215     
2.8861119      5.921529      
2.837496       5.2080359     
2.5294983      4.8344766     
2.9210176      5.5507867     
2.7412018      5.5857866     
2.6591299      4.3818646     
2.5130445      4.9804183     
3.1058267      5.5106443     
3.3025077      5.7574212     
2.7956756      5.0720467     
2.9737672      5.8250931     
2.6710196      5.0941501     
2.9686547      5.901008      
2.8074283      5.4297384     
6.7961349      6.0001695     
6.4437514      5.6339266     
6.9754017      5.8189198     
5.6923082      4.4891254     
6.5984751      5.3901207     
6.1517776      4.8974035     
6.6065644      5.5986187     
4.759874       4.3136202     
6.5546382      5.5436868     
5.5011511      4.5941521     
5.0002549      4.0522372     
6.0224389      5.2124439     
5.7736764      4.7668379     
6.4953853      5.1903675     
5.3364769      5.0629127     
6.4389134      5.7829664     
6.1709338      4.9627499     
5.7458813      4.9828064     
6.4537025      4.7729094     
5.5545872      4.7332394     
6.6275817      5.2305124     
5.8681272      5.2479059     
6.8078095      4.9871684     
6.4318433      5.1323376     
6.2253487      5.465109      
6.4109813      5.6443412     
6.8423818      5.5594003     
7.0687368      5.5821223     
6.3237964      5.1523966     
5.204006       4.949643      
5.440998       4.6121911     
5.3194564      4.6372386     
5.6463357      5.0030194     
6.8900779      4.8935226     
6.098616       4.8314411     
6.3185463      5.5097803     
6.7317694      5.722765      
6.3242084      4.9440526     
5.7565361      5.0479987     
5.6758544      4.6350671     
5.9743719      4.6452005     
6.4015012      5.2809153     
5.7402198      4.9124716     
4.8042598      4.3063037     
5.866874       4.8115092     
5.8424678      5.1035466     
5.8865791      5.0231053     
6.1530309      5.3338002     
4.6028777      4.5631602     
5.8091488      4.9677114     
8.0430681      5.3028838     
6.9254133      4.7398024     
8.1278252      5.6566652     
7.4821558      5.1336016     
7.8610989      5.2728454     
8.9082203      5.8618983     
6.0307247      4.123374      
8.4433454      5.6671066     
7.8310134      5.0691818     
8.4294749      6.0951088     
7.1732758      5.5567668     
7.3136813      5.0985747     
7.6767196      5.5300099     
6.8559354      4.5383128     
7.0966086      4.7754209     
7.4160846      5.4335471     
7.4605895      5.3554582     
9.0001057      6.486272      
9.3060273      5.5679974     
6.8096707      4.5537158     
7.939508       5.6915111     
6.7094386      4.7091479     
9.0106057      5.7715045     
6.8990091      5.1106987     
7.7871944      5.6481141     
8.1255342      5.8730957     
6.7689661      5.1355922     
6.8020106      5.1983025     
7.6341949      5.1038737     
7.8989047      5.7772489     
8.3523013      5.6874736     
8.743683       6.6852526     
7.6700793      5.0964032     
6.9544433      5.170927      
7.2909809      4.8132622     
8.587862       6.0004966     
7.6563279      5.453633      
7.4162037      5.3627746     
6.6801944      5.1502251     
7.6189944      5.6862121     
7.8256443      5.497338      
7.4337916      5.7240021     
6.9254133      4.7398024     
8.0746635      5.5907028     
7.9307322      5.6182322     
7.4553579      5.5021455     
7.0370045      4.9397096     
7.2753867      5.3932482     
7.4129702      5.430603      
6.9010071      5.0318398</span>

每个样本正好是二维的,画在平面坐标系中如图:

鹫尾花数据集共分为3类花(前50个样本为一类,中间50个样本为一类,后50个样本为一类),从上图可以看到把数据集映射到2维后分类会更容易进行,直观上看已经是线性可分的了,下面我们用自组织映射网络对其进行聚类。

当然我们已知了有3类,所以在设计SOFM网络时,我把竞争层节点数设为3,此时的聚类结果是前50个样本聚为一类,后100个样本聚为一类。当把竞争层节点数改为4时,仅第2类中的3个样本被误分到了第3类中,整体精度达98%!

主成分分析PCA详解(一)
主成分分析PCA详解(二)

这篇关于主成分分析PCA详解(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087259

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空