Spark on YARN cluster作业运行全过程分析

2024-06-23 13:08

本文主要是介绍Spark on YARN cluster作业运行全过程分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是分析Spark on YARN的Cluster模式,从用户提交作业到作业运行结束整个运行期间的过程分析。

客户端进行操作

  1、根据yarnConf来初始化yarnClient,并启动yarnClient
  2、创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;
  3、设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
  4、设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
  5、申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。
  当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。

提交到YARN集群,YARN操作

  1、运行ApplicationMaster的run方法;
  2、设置好相关的环境变量。
  3、创建amClient,并启动;
  4、在Spark UI启动之前设置Spark UI的AmIpFilter;
  5、在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
  6、等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;


  怎么知道SparkContext初始化完成?
  其实在5步骤中启动Application的过程中会初始化SparkContext,在初始化SparkContext的时候将会创建YarnClusterScheduler,在SparkContext初始化完成的时候,会调用YarnClusterScheduler类中的postStartHook方法,而该方法会通知ApplicationMaster已经初始化好了SparkContext
 
 7、当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster
  8、分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。如果在启动Executeors的过程中失败的次数达到了maxNumExecutorFailures的次数,maxNumExecutorFailures的计算规则如下:


// Default to numExecutors * 2, with minimum of 3
private val maxNumExecutorFailures = sparkConf.getInt("spark.yarn.max.executor.failures",sparkConf.getInt("spark.yarn.max.worker.failures", math.max(args.numExecutors * 2, 3)))

  那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。
  9、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。

本文链接: 【Spark on YARN集群模式作业运行全过程分析】(https://www.iteblog.com/archives/1189)

这篇关于Spark on YARN cluster作业运行全过程分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087242

相关文章

mysql5.7.15winx64配置全过程

《mysql5.7.15winx64配置全过程》文章详细介绍了MySQL5.7.15免安装版的配置步骤,包括解压安装包、设置环境变量、修改配置文件、初始化数据目录、安装服务、启动数据库、登录及密码修改... 目录前言一、首先下载安装包二、安android装步骤1.第一步解压文件2.配置环境变量3.复制my-

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

mybatis用拦截器实现字段加解密全过程

《mybatis用拦截器实现字段加解密全过程》本文通过自定义注解和MyBatis拦截器实现敏感信息加密,处理Parameter和ResultSet,确保数据库存储安全且查询结果解密可用... 目录前言拦截器的使用总结前言根据公司业务需要,灵活对客户敏感信息进行加解密,这里采用myBATis拦截器进行简单实

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

IDEA中配置Tomcat全过程

《IDEA中配置Tomcat全过程》文章介绍了在IDEA中配置Tomcat的六步流程,包括添加服务器、配置部署选项、设置应用服务器及启动,并提及Maven依赖可能因约定大于配置导致问题,需检查依赖版本... 目录第一步第二步第三步第四步第五步第六步总结第一步选择这个方框第二步选择+号,找到Tomca

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致