NeRF从入门到放弃5: Neurad代码实现细节

2024-06-23 11:04

本文主要是介绍NeRF从入门到放弃5: Neurad代码实现细节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Talk is cheap, show me the code。

CNN Decoder

如patch设置为32x32,patch_scale设置为3,则先在原图上采样96x96大小的像素块,然后每隔三个取一个像素,降采样成32x32的块。

用这32x32个像素render feature,再经过CNN反卷积预测出96x96的像素,与真值对比。

def _patches_from_centers(self,image: torch.Tensor,patch_center_indices: torch.Tensor,rgb_size: int,device: Union[torch.device, str] = "cpu",
):"""Convert patch center coordinates to the full set of ray indices and image patches."""offsets = torch.arange(-(rgb_size // 2), (rgb_size // 2) + rgb_size % 2, device=device)zeros = offsets.new_zeros((rgb_size, rgb_size))relative_indices = torch.stack((zeros, *torch.meshgrid(offsets, offsets, indexing="ij")), dim=-1)[None]  # 1xKxKx3,原图采样大小rgb_indices = patch_center_indices[:, None, None] + relative_indices  # NxKxKx3ray_indices = rgb_indices[:, self.patch_scale // 2 :: self.patch_scale, self.patch_scale // 2 :: self.patch_scale]  # NxKfxKfx3,降采样ray_indices = ray_indices.reshape(-1, 3)  # (N*Kf*Kf)x3img_patches = image[rgb_indices[..., 0], rgb_indices[..., 1], rgb_indices[..., 2]]return ray_indices, img_patches

相机位姿优化

参考nerfstudio/cameras/camera_optimizers.py

每迭代一次优化一次

  1. 初始化
self.pose_adjustment = torch.nn.Parameter(torch.zeros((num_cameras, 6), device=device)) # Nx6,前3维表示平移,后三维表示后3维表示切向量,再通过exp_map_SO3xR3,把6维变量映射为位姿和位移变量。相当于优化的是每个相机的标定参数
  1. 计算位姿偏移量
def forward(self,indices: Int[Tensor, "camera_indices"],) -> Float[Tensor, "camera_indices 3 4"]:correction_matrices = exp_map_SO3xR3(self._get_pose_adjustment()[indices, :])
  1. 应用到相机的原始位姿上
def apply_to_raybundle(self, raybundle: RayBundle) -> None:"""Apply the pose correction to the raybundle"""if self.config.mode != "off":correction_matrices = self(raybundle.camera_indices.squeeze())  # type: ignoreraybundle.origins = raybundle.origins + correction_matrices[:, :3, 3]raybundle.directions = (torch.bmm(correction_matrices[:, :3, :3], raybundle.directions[..., None]).squeeze().to(raybundle.origins))
  1. 可学习的6维向量如何转成旋转矩阵
# nerfstudio/cameras/lie_groups.py
# We make an exception on snake case conventions because SO3 != so3.
def exp_map_SO3xR3(tangent_vector: Float[Tensor, "b 6"]) -> Float[Tensor, "b 3 4"]:"""Compute the exponential map of the direct product group `SO(3) x R^3`.This can be used for learning pose deltas on SE(3), and is generally faster than `exp_map_SE3`.Args:tangent_vector: Tangent vector; length-3 translations, followed by an `so(3)` tangent vector.Returns:[R|t] transformation matrices."""# code for SO3 map grabbed from pytorch3d and stripped down to bare-boneslog_rot = tangent_vector[:, 3:]nrms = (log_rot * log_rot).sum(1)rot_angles = torch.clamp(nrms, 1e-4).sqrt()rot_angles_inv = 1.0 / rot_anglesfac1 = rot_angles_inv * rot_angles.sin()fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos())skews = torch.zeros((log_rot.shape[0], 3, 3), dtype=log_rot.dtype, device=log_rot.device)skews[:, 0, 1] = -log_rot[:, 2]skews[:, 0, 2] = log_rot[:, 1]skews[:, 1, 0] = log_rot[:, 2]skews[:, 1, 2] = -log_rot[:, 0]skews[:, 2, 0] = -log_rot[:, 1]skews[:, 2, 1] = log_rot[:, 0]skews_square = torch.bmm(skews, skews)ret = torch.zeros(tangent_vector.shape[0], 3, 4, dtype=tangent_vector.dtype, device=tangent_vector.device)ret[:, :3, :3] = (fac1[:, None, None] * skews+ fac2[:, None, None] * skews_square+ torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None])# Compute the translationret[:, :3, 3] = tangent_vector[:, :3]return ret

Apperance embedding

就是简单的使用torch.nn.Embedding(num_embeds, self.config.appearance_dim)

# Appearance embedding settings
# num_sensor指的是相机个数,如果配置temporal,则每一帧都有单独的embedding 
if self.config.use_temporal_appearance:self._num_embeds_per_sensor = math.ceil(self._duration * self.config.temporal_appearance_freq)num_embeds = num_sensors * self._num_embeds_per_sensor
else:num_embeds = num_sensors# num_embeds=6,self.config.appearance_dim=16,表示6个相机,每个相机有16维的Embedding特征
self.appearance_embedding = torch.nn.Embedding(num_embeds, self.config.appearance_dim)def _get_appearance_embedding(self, ray_bundle, features):sensor_idx = ray_bundle.metadata.get("sensor_idxs")if sensor_idx is None:assert not self.training, "Sensor sensor_idx must be present in metadata during training"sensor_idx = torch.full_like(features[..., :1], self.fallback_sensor_idx.value, dtype=torch.long)if self.config.use_temporal_appearance:time_idx = ray_bundle.times / self._duration * (embd_per_sensor := self._num_embeds_per_sensor)before_idx = time_idx.floor().clamp(0, embd_per_sensor - 1)after_idx = (before_idx + 1).clamp(0, embd_per_sensor - 1)ratio = time_idx - before_idx# unwrap to true embedding indices, which also account for the sensor index, not just the time indexbefore_idx, after_idx = (x + sensor_idx * embd_per_sensor for x in (before_idx, after_idx))before_embed = self.appearance_embedding(before_idx.squeeze(-1).long())after_embed = self.appearance_embedding(after_idx.squeeze(-1).long())embed = before_embed * (1 - ratio) + after_embed * ratioelse:embed = self.appearance_embedding(sensor_idx.squeeze(-1))return embed

lidar建模和采样

lidar发射射线和camer类似,只需要根据世界坐标系下lidar原点的坐标和点云的坐标,就能确定一条射线了,沿这条射线采样点,真值是这条射线上真正扫描到的点。

采样时,根据每次迭代设置的采样点数N如16384,平均到每帧的每个点上。

采样方式是把全部帧的点云concate起来,每个点有个全局的序号和帧的idx,假设总点数为100万,采样时在0-100万之间随机生成N个随机数。

    def get_lidar_batch_and_ray_bundle(self):if not len(self.lidar_dataset.lidars):return None, Nonebatch = self.point_sampler.sample(self.cached_points)ray_indices = batch.pop("indices") # Nx2, 0: lidar index, 1: point index,共采样16384个点,每帧采样点数一样ray_bundle: RayBundle = self.lidar_ray_generator(ray_indices, points=batch["lidar"]) #把所有的点都concate起来了return batch, ray_bundle # batch存储lidar原始点,ray_bundle存储采样的方向,原点信息

另外,pixel_area的作用没太看懂,有点像是MipNerf里面的用锥形体界面去积分,而不是直接的射线?

    dx = self.horizontal_beam_divergence[lidar_indices.squeeze(-1)]  # ("num_rays":...,)dy = self.vertical_beam_divergence[lidar_indices.squeeze(-1)]  # ("num_rays":...,)pixel_area = dx * dy  # ("num_rays":..., 1)

sdf实现

如果使用sdf,直接根据下面公式预测出不透明度α;否则便是先预测出密度density,再根据density积分得到不透明度。

因此两种render weight的方式是不同的。
在这里插入图片描述

if self.config.use_sdf:signed_distance = geo_out  # 直接把mlp的输出当作signed distanceoutputs[FieldHeadNames.SDF] = signed_distanceoutputs[FieldHeadNames.ALPHA] = self.sdf_to_density(signed_distance)
else:outputs[FieldHeadNames.DENSITY] = trunc_exp(geo_out) # 调用了torch.exp(), 为什么不能直接用geo_out作为density?有两个原因:1.因为density的物理意义是大于0的,geo_out不保证大于0  2. 网络输出的值可能非常小,使用epx放大,可以保持数值稳定性self.sdf_to_density = SigmoidDensity(self.config.sdf_beta, learnable_beta=self.config.learnable_beta)

这个名字应该叫SigmoidAlpha,最后输出的被当做α,不是density了

class SigmoidDensity(nn.Module):"""Learnable sigmoid density"""def __init__(self, init_val, beta_min=0.0001, learnable_beta=False):super().__init__()self.register_buffer("beta_min", torch.tensor(beta_min))self.register_parameter("beta", nn.Parameter(init_val * torch.ones(1), requires_grad=learnable_beta))def forward(self, sdf: Tensor, beta: Union[Tensor, None] = None) -> Tensor:"""convert sdf value to density value with beta, if beta is missing, then use learable beta"""if beta is None:beta = self.get_beta()# negtive sdf will have large densityreturn torch.sigmoid(-sdf * beta) #这里就是上面的公式,这里叫α,和density不是一个东西def get_beta(self):"""return current beta value"""beta = self.beta.abs() + self.beta_minreturn beta

render_weight_from_alpha()直接处理不透明度,而[render_weight_from_density()]则需要先从密度计算不透明度。

def _render_weights(self, outputs, ray_samples):value = outputs[FieldHeadNames.ALPHA if self.config.field.use_sdf else                 FieldHeadNames.DENSITY].squeeze(-1)if self.device.type in ("cpu", "mps"):# Note: for debugging on devices without cudaweights = torch.zeros_like(value) + 0.5elif self.config.field.use_sdf:weights, _ = nerfacc.render_weight_from_alpha(value)else:weights, _, _ = nerfacc.render_weight_from_density(t_ends=ray_samples.frustums.ends.squeeze(-1),t_starts=ray_samples.frustums.starts.squeeze(-1),sigmas=value,)return weights

这篇关于NeRF从入门到放弃5: Neurad代码实现细节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086973

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too