算法:渐进记号的含义及时间复杂度计算

2024-06-23 04:44

本文主要是介绍算法:渐进记号的含义及时间复杂度计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

渐进记号及时间复杂度计算

渐近符号

渐近记号 Ω \Omega Ω

   f ( n ) = Ω ( g ( n ) ) f(n)=\Omega(g(n)) f(n)=Ω(g(n)) 当且仅当存在正的常数C和 n 0 n_0 n0,使得对于所有的 n ≥ n 0 n≥ n_0 nn0 ,有 f ( n ) ≥ C ( g ( n ) ) f(n)≥C(g(n)) f(n)C(g(n))。此时,称 g ( n ) g(n) g(n) f ( n ) f(n) f(n)的下界。
  根据符号 Ω \Omega Ω的定义,用它评估算法的复杂度得到的是问题规模充分大时的一个下界。这个下界的阶越高,评估越精确,越有价值。

例:设 f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,则
f ( n ) = Ω ( n 2 ) f(n)=\Omega(n^2) f(n)=Ω(n2),取 c = 1 , n 0 = 1 c=1,n_0=1 c=1,n0=1 即可
f ( n ) = Ω ( 100 n ) f(n)=\Omega(100n) f(n)=Ω(100n),取 c = 1 / 100 , n 0 = 1 c=1/100,n_0=1 c=1/100,n0=1 即可
显然, Ω ( n 2 ) \Omega(n^2) Ω(n2)作为下界更为精确。

渐进记号 Θ \Theta Θ

   f ( n ) = Θ ( g ( n ) ) f(n)=\Theta(g(n)) f(n)=Θ(g(n)) 当且仅当存在正常数和 C 1 , C 2 , n 0 C_1,C_2,n_0 C1,C2,n0,使得对于所有的 n ≥ n 0 n≥n_0 nn0, 有 C 1 ( g ( n ) ) ≤ f ( n ) ≤ C 2 ( g ( n ) ) C_1(g(n))≤f(n)≤ C_2(g(n)) C1(g(n))f(n)C2(g(n))。此时,称 f ( n ) f(n) f(n) g ( n ) g(n) g(n)同阶。
  这种渐进符号是指,当问题规模足够大的时候,算法的运行时间将主要取决于时间表达式的第一项,其它项的执行时间可以忽略不计。第一项的常数系数,随着n的增大,对算法的执行时间也变得不重要了。

例: 3 n + 2 = Θ ( n ) 3n+2= Θ(n) 3n+2=Θ(n)
10 n 2 + 4 n + 2 = Θ ( n 2 ) 10n^2+4n+2= Θ(n^2) 10n2+4n+2=Θ(n2)
5 × 2 n + n 2 = Θ ( 2 n ) 5×2^n+n^2= Θ(2^n) 5×2n+n2=Θ(2n)

渐进记号小 ο \omicron ο

   f ( n ) = ο ( g ( n ) ) f(n)=\omicron(g(n)) f(n)=ο(g(n))当且仅当 f ( n ) = ο ( g ( n ) ) f(n)=\omicron(g(n)) f(n)=ο(g(n)) g ( n ) ≠ ο ( f ( n ) ) g(n)\neq \omicron(f(n)) g(n)=ο(f(n)),此时, g ( n ) g(n) g(n) f ( n ) f(n) f(n)的一个绝对上界。
  小 ο \omicron ο提供的上界可能是渐近紧确的,也可能是非紧确的。(如: 2 n 2 = ο ( n 2 ) 2n^2=\omicron(n^2) 2n2=ο(n2)是渐近紧确的,而 2 n = ο ( n 2 ) 2n=\omicron(n^2) 2n=ο(n2)是非紧确上界。

例: 4 n l o g n + 7 = ο ( n 2 ) 4nlogn + 7= \omicron(n^2) 4nlogn+7=ο(n2)

渐进记号小 ω \omega ω

   f ( n ) = ω ( g ( n ) ) f(n)=\omega(g(n)) f(n)=ω(g(n))当且仅当 f ( n ) = ω ( g ( n ) ) f(n)=\omega(g(n)) f(n)=ω(g(n)) g ( n ) ≠ ω ( f ( n ) ) g(n)\neq \omega(f(n)) g(n)=ω(f(n)),此时, g ( n ) g(n) g(n) f ( n ) f(n) f(n)的一个绝对下界。
   ω \omega ω表示一个非渐进紧确的下界。

例: f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,则 f ( n ) = f(n)= f(n)=\omega ( n ) (n) (n)是正确的, f ( n ) = f(n)= f(n)=\omega ( n 2 ) (n^2) (n2)是错误的。

渐进记号大 O \Omicron O

  设 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 是定义域为自然数集上的函数。若存在正数 c c c n 0 n_0 n0c和n_0c,使得对一切 n ≥ n 0 n≥ n_0 nn0 都有 0 ≤ f ( n ) ≤ c g ( n ) 0 ≤ f(n) ≤ cg(n) 0f(n)cg(n)成立,则称 f ( n ) f(n) f(n)的渐进的上界是 g ( n ) g(n) g(n),记作 f ( n ) = O g ( n ) f(n)=\Omicron g(n) f(n)=Og(n)
  根据符号大 O \Omicron O的定义,用它评估算法的复杂度得到的只是问题规模充分大时的一个上界。这个上界的阶越低,评估越精确,越有价值。

例:设 f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,有
f ( n ) = O ( n 2 ) f(n)=\Omicron(n^2) f(n)=O(n2),取 c = 2 , n 0 = 1 c=2,n_0=1 c=2,n0=1即可
f ( n ) = O ( n 3 ) f(n)=\Omicron(n^3) f(n)=O(n3),取 c = 1 , n 0 = 2 c=1,n_0=2 c=1,n0=2即可

常见的时间复杂度关系

O(1)<O(log(n))<O(n)<O(nlogn)<O(n^{2})

   O ( 2 n ) O(2^{n}) O(2n) O ( n ! ) O(n!) O(n!)大于以上的所有时间复杂度,具体原因参考图像。

时间复杂度计算:递归方程

  加、减、乘、除、比较、赋值等操作,一般被看作是基本操作,并约定所用的时间都是一个单位时间;通过计算这些操作分别执行了多少次来确定程序总的执行步数。一般来说,算法中关键操作的执行次数决定了算法的时间复杂度。
  比较简单的算法时间复杂性估计通常需要观察在for、while循环中的关键操作执行次数,在这里我们只讨论一种比较复杂的时间复杂度计算问题:求递归方程解的渐近阶的方法。递归式就是一个等式,代表了递归算法运算时间和n的关系,通过更小输入的函数值来描述一个函数。那么如何求得递归算法的Θ渐进界呢?主要有三种方法。

代入法

  代入法是指自己猜测一个界,然后用数学归纳法进行验证是否正确,这种猜测主要靠经验,不常用。

迭代法

  迭代法是指循环地展开递归方程,然后把递归方程转化为和式,使用求和技术解之。

套用公式法

  这个方法为估计形如: T ( n ) = a T ( n / b ) + f ( n ) T(n)=aT(n/b)+f(n) T(n)=aT(n/b)+f(n) 的递归方程解的渐近阶提供三个可套用的公式。要求其中的a≥1和b>1是常数,f(n)是一个确定的正函数。那么在三种情况下,我们可以得到T(n)的渐进估计式,懒得打公式,所以截图。
在这里插入图片描述

这篇关于算法:渐进记号的含义及时间复杂度计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086225

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基