数据挖掘与分析——数据预处理

2024-06-23 02:36

本文主要是介绍数据挖掘与分析——数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 数据探索

波士顿房价数据集:卡内基梅隆大学收集,StatLib库,1978年,涵盖了麻省波士顿的506个不同郊区的房屋数据。

一共含有506条数据。每条数据14个字段,包含13个属性,和一个房价的平均值。

数据读取方法:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
names =['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']
data=pd.read_csv('housing.csv', names=names, delim_whitespace=True)
data1=data.head(10)
  1. 请绘制散点图探索波士顿房价数据集中犯罪率(CRIM)和房价中位数(MEDV)之间的相关性。
# 创建散点图
sns.scatterplot(x=data1['CRIM'], y=data1['ZN'])
# 添加数据标签
for i in range(len(data1['CRIM'])):plt.text(data1['CRIM'][i], data1['ZN'][i], str(i), fontsize=8, color='black')
# 添加标题
plt.title('Correlation between CRIM and ZN')
# 显示图形
plt.show()

 

  1. 请使用波士顿房价数据集中房价中位数(MEDV)来绘制箱线图。
# 创建箱线图
sns.boxplot(data['CRIM'])
# 添加数据标签
# for i in range(len(data['CRIM'])):
#     plt.text(1, data['CRIM'][i], data['CRIM'][i], horizontalalignment='center', verticalalignment='bottom')
plt.title('Boxplot of CRIM')
plt.show()

 

  1. 请使用暗点图矩阵探索波士顿房价数据集。
sns.pairplot(data)
plt.show()print(data['CRIM'].corr(data['MEDV'],method='pearson'))
print(data['CRIM'].corr(data['MEDV'],method='spearman'))
print(data['CRIM'].corr(data['MEDV'],method='kendall'))

 

  1. 请分别使用皮尔逊(pearson)、斯皮尔曼(spearman)、肯德尔(kendall)相关系数对犯罪率(CRIM)和房价中位数(MEDV)之间的相关性进行度量。
print(data['CRIM'].corr(data['MEDV'],method='pearson'))
print(data['CRIM'].corr(data['MEDV'],method='spearman'))
print(data['CRIM'].corr(data['MEDV'],method='kendall'))

 

相关系数计算方法:

  1. 请绘制波士顿房价数据集中各变量之间相关系数的热力图。

需提前安装seaborn库:pip install seaborn


plt.figure(figsize=(12, 10))
sns.heatmap(data.corr(),annot=True,cmap='Blues_r')
plt.show()

 

  1. 数据预处理
x1x2x3x4x5x6x7x8x9x10x11x12x13x14y
122.0811.462441.5850001210012130
022.6772840.1650000216010
029.581.751441.250001228010
021.671530111112011
120.178.172641.96111402601591
00.5852881120211
117.426.52340.12500002601010
058.674.4621183.0411602435611
127.8311283000021765380
055.757.082486.7511312100510
133.51.752148114122538581
141.425211851161247011
120.671.251881.375113121400
34.92521487.511612010011
12.712842.415001232010
148.086.0424400002026911
129.584.52947.51121233011
018.9292640.7511202885921
1201.251440.1250000214050
022.425.66521142.585170212932581
028.170.5852640.04000210050
019.170.5851640.5851001216010
141.171.3352240.1650000216810
141.581.752440.21100216010
19.52640.7900002803510
132.751.521385.511312011
122.50.1251440.12500002200710
133.173.041882.0411112180180281
030.6712284211102220201
123.082.52841.0851111126021851
1270.75288113123121511
020.4210.51148000012154330
152.331.3751889.4610122001010
123.0811.52982.1251111122902851
142.831.2527413.875011123521130
174.83191110.040120203520
125264310012011
139.5813.9152948.625116127011
047.7582847.87511612012611
047.423214413.8751121251917051
123.17021340.0851002011
122.581.51640.5400012120680
126.751.12521481.2510002052991
163.330.542840.5851131218010
123.750.4151840.040120212870
020.7521140.71112124911
024.51.751840.1650000213210
116.170.042840.0400002011
029.521108200002256180
052.83152845.5111402022011
132.333.52440.50001223210
121.084.1251380.0400021401010
128.170.1251440.0850000221621010
1191.751842.3350001211270
127.583.251185.0850121220
127.831.52942111112434361
16.52653.51110205011
037.332.52380.21000022600
142.54.9151943.16510125214431
156.7512.252741.251141220011
143.1752352.250001214110
023.750.712940.250111224050
118.522341.5112021203011
040.833.52350.500001116010
024.50.521181.5100022808251
  1. 读取“银行贷款审批数据.xlsx”表,自变量为x1-x14,决策变量为y(1-同意贷款,0-不同意贷款),自变量中有连续变量(x2,x3,x5,x6,x7,x10,x13,x14)和离散变量(x1,x4,x8,x9,x11,x12),请对连续变量中的缺失值用均值策略填充,对离散变量中的缺失值用最频繁值策略填充。
import pandas as pd# 读取Excel文件
df = pd.read_excel("银行贷款审批数据.xlsx")# 定义连续变量和离散变量列表
continuous_vars = ['x2', 'x3', 'x5', 'x6', 'x7', 'x10', 'x13', 'x14']
discrete_vars = ['x1', 'x4', 'x8', 'x9', 'x11', 'x12']# 使用均值填充连续变量的缺失值
for var in continuous_vars:df[var].fillna(df[var].mean(), inplace=True)# 使用最频繁值填充离散变量的缺失值
for var in discrete_vars:most_frequent_value = df[var].mode()[0]df[var].fillna(most_frequent_value, inplace=True)# 检查是否还有缺失值
missing_values = df.isnull().sum().sum()
if missing_values == 0:print("所有缺失值已填充。")
else:print("仍有缺失值未填充。")# 输出填充后的数据框的前几行
print(df.head())# 保存填充后的数据框到Excel文件
df.to_excel("填充后的银行贷款审批数据.xlsx", index=False)

 

 

x1x2x3x4x5x6x7x8x9x10x11x12x13x14y
122.0811.462441.5850001210012130
022.6772840.1650000216010
029.581.751441.250001228010
021.674.7216372981530111112011
120.178.172641.96111402601591
031.594380530.5852882.22917525811202183.760997111
117.426.52340.12500002601010
058.674.4621183.0411602435611
127.8311283000021765380
055.757.082486.7511312100510
133.51.7521482.229175258114122538581
141.425211851161247011
120.671.251881.375113121401023.6530610
134.92521487.511612010011
131.594380532.712842.415002.4245973651232010
148.086.042442.22917525800002026911
129.584.52947.51121233011
018.9292640.7511202885921
1201.251440.1250000214050
022.425.66521142.5851070212932581
028.170.5852640.0410002183.760997110050
019.170.5851640.5851001216010
141.171.3352240.1650000216810
141.581.752440.21102.4245973650216010
119.54.7216372982640.7900002803510
132.751.521385.511312011
122.50.1251440.12500002200710
133.173.041882.0411112180180281
030.6712284211102220201
123.082.52841.0851111126021851
1270.752882.229175258113123121511
020.4210.51148000012154330
152.331.3751889.46102.424597365122001010
123.0811.52982.1251111122902851
142.831.2527413.875011123521130
174.83191110.040120203520
1254.7216372982643100122011
139.5813.9152948.625116127011
047.7582847.87511612012611
047.423214413.8751121251917051
123.17021340.085102.42459736502011
122.581.51640.5400012120680
126.751.12521481.2510002052991
163.330.542840.5851131218010
123.750.4151840.040120212870
  1. 请使用StandardScaler对波士顿房价数据集进行零-均值规范化。
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
print(X_scaled)
print(X_scaled.shape)

  1. 在上一问规范化后的数据基础上使用PCA对数据进行降维处理(降维后的特征数量为2)。

 

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
print(X_pca)
print(X_pca.shape)

 

这篇关于数据挖掘与分析——数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086059

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重