OpenCV Mat实现图像四则运算及常用四则运算的API函数

2024-06-23 00:44

本文主要是介绍OpenCV Mat实现图像四则运算及常用四则运算的API函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       装载有图像数据的OpenCV Mat对象,可以说是一个图像矩阵,可以进行加、减、乘、除运算。特别是加运算特别有用。

       一 与常数的四则运算

           与常数的加运算  示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("3.jpeg");if (src1.empty()){cout << "Open Image Failed!" << endl;}elseimshow("src1",src1);src1 += 30;imshow("src1 new", src1);waitKey(0);}

示例代码中 src1 +=  30;即为与常数加运算代码,试运行结果如下:

图像亮度变亮了。

        与常数的加运算  示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("3.jpeg");if (src1.empty()){cout << "Open Image Failed!" << endl;}elseimshow("src1",src1);src1 -= 30; //subtractimshow("src1 new", src1);waitKey(0);}

示例代码中 src1 -=  30;即为与常数加减算代码,试运行结果如下:

图像整体变暗了。

        与常数的乘运算  示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("3.jpeg");if (src1.empty()){cout << "Open Image Failed!" << endl;}elseimshow("src1",src1);src1 *= 1.2; //Multiply imshow("src1 new", src1);waitKey(0);}

示例代码中 src1 *=  1.2;即为与常数乘减算代码,试运行结果如下:

图像亮度变亮了。

          与常数的除运算  示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("3.jpeg");if (src1.empty()){cout << "Open Image Failed!" << endl;}elseimshow("src1",src1);src1 /= 1.5; //divideimshow("src1 new", src1);waitKey(0);}

示例代码中 src1 *=  1.2;即为与常数乘减算代码,试运行结果如下:

图像整体变暗了很多。 

        常用加运算函数

        OpenCV 图像矩阵常用加运算函数有:addWeighted,add,scaleAdd等。

        addWeighted()

        addWeighted()的原型函数如下:

void cv::addWeighted(InputArray  src1,

                                     double      alpha,

                                     InputArray src2,

                                    double       beta,

                                    double      gamma,

                                   OutputArray  dst,

                                   int                 dtype = -1

             )

这个函数是计算两个数组的加权和,其计算方式如下;

其中 I 是数组元素的多维索引。对于多通道阵列,每个通道都是独立处理的。该函数可以用矩阵表达式替换:

参数:

       src1 第一个输入数组。 

       alpha 第一个数组的权重

       src2 第二个输入数组。

       beta 第一个数组的权重

        gamma 添加到每个总和的标量

        dst 输出数组与输入数组具有相同的大小和通道数。

       dtype 输出数组的可选深度;当两个输入数组具有相同的深度时,dtype 可以设置为-1,这相当于 src1.depth()。

     示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{//addWeighted()Mat src1 = imread("3.jpeg");if (src1.empty()){cout << "Open Image Failed!" << endl;return -1;}imshow("src1",src1);Mat src2 = imread("1.bmp");if (src2.empty()){cout << "Open Image Failed!" << endl;return -1;}imshow("src2", src2);resize(src2, src2, src1.size());Mat dst;addWeighted(src1, 1.0, src2, 0.3, 0, dst, -1);imshow("dst", dst);waitKey(0);}

试运行,结果如下:

用addWeighted(),将左边的两张图合成到一起了。

        add()

add()函数的原型如下:

void cv::add(InputArray src1,

                        InputArray  src2,

                        OutputArray dst,

                        InputArray    mask = noArray(),

         int    dtype = -1

        )

其原理如下: 

        示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("1.jpeg");if (src1.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src1", src1);Mat src2 = imread("2.bmp");if (src2.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src2", src2);resize(src2, src2, src1.size());Mat dst;add(src1, src2, dst);imshow("dst", dst);waitKey(0);}

试运行,结果如下:

        

用Add同样实现了图像合成。 

        scaleAdd()

        scaleAdd()函数的原型如下:

void cv::scaleAdd(InputArray src1,

                                double alpha,

                                InputArray src2,

                              OutputArray dst

                                )

其原理如下:

示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("1.jpeg");if (src1.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src1", src1);Mat src2 = imread("2.bmp");if (src2.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src2", src2);resize(src2, src2, src1.size());Mat dst;//add(src1, src2, dst);scaleAdd(src1, 0.7, src2, dst);imshow("dst", dst);waitKey(0);}

试运行,结果如下:

     减运算函数subtract()

subtract的·原型如下:

其原理如下:

示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("1.jpeg");if (src1.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src1", src1);Mat src2 = imread("2.bmp");if (src2.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src2", src2);resize(src2, src2, src1.size());Mat dst;//add(src1, src2, dst);//aleAdd(src1, 0.7, src2, dst);subtract(src1, src2, dst);imshow("dst", dst);waitKey(0);}

试运行,结果如下:

        乘运算multiply()

multiply()函数的原型如下:

其原理如下:

示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("1.jpeg");if (src1.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src1", src1);Mat src2 = imread("2.bmp");if (src2.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src2", src2);resize(src2, src2, src1.size());Mat dst;//add(src1, src2, dst);//aleAdd(src1, 0.7, src2, dst);//subtract(src1, src2, dst);multiply(src1, src2, dst,0.01);imshow("dst", dst);waitKey(0);}

试运行,结果如下:

         除运算divide()

divide()函数的原型如下:

其原理如下:

示例:

#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main()
{Mat src1 = imread("1.jpeg");if (src1.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src1", src1);Mat src2 = imread("2.bmp");if (src2.empty()){cout << "Cann't open the Image" << endl;return -1;}imshow("src2", src2);resize(src2, src2, src1.size());Mat dst;//add(src1, src2, dst);//aleAdd(src1, 0.7, src2, dst);//subtract(src1, src2, dst);//multiply(src1, src2, dst,0.01);divide(src1, src2, dst, 70);imshow("dst", dst);waitKey(0);}

试运行,结果如下:

本文就介绍到这里,示例代码及所用到的图片已上传到CSDN,如果需要自己查看试运行效果,可以去下载,链接为:https://download.csdn.net/download/billliu66/89469718

这篇关于OpenCV Mat实现图像四则运算及常用四则运算的API函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085856

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q