bert文本分类微调笔记

2024-06-22 22:04
文章标签 笔记 分类 微调 文本 bert

本文主要是介绍bert文本分类微调笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Bert实现文本分类微调Demo

import random
from collections import namedtuple'''
有四种文本需要做分类,请使用bert处理这个分类问题
'''# 使用namedtuple定义一个类别(Category),包含两个字段:名称(name)和样例(samples)
Category = namedtuple('Category', ['name', 'samples'])# 定义四个不同的类别及其对应的样例文本
categories = [Category('Weather Forecast', ['今天北京晴转多云,气温20-25度。', '明天上海有小雨,记得带伞。']),  # 天气预报类别的样例Category('Company Financial Report', ['本季度公司净利润增长20%。', '年度财务报告显示,成本控制良好。']),  # 公司财报类别的样例Category('Company Audit Materials', ['审计发现内部控制存在漏洞。', '审计确认财务报表无重大错报。']),  # 公司审计材料类别的样例Category('Product Marketing Ad', ['新口味可乐,清爽上市!', '买一送一,仅限今日。'])  # 产品营销广告类别的样例
]def generate_data(num_samples_per_category=50):''' 生成模拟数据集输入:- num_samples_per_category: 每个类别生成的样本数量,默认为50输出:- data: 包含文本样本及其对应类别的列表,每项为一个元组(text, label)'''data = []  # 初始化存储数据的列表for category in categories:  # 遍历所有类别for _ in range(num_samples_per_category):  # 对每个类别生成指定数量的样本sample = random.choice(category.samples)  # 从该类别的样例中随机选择一条文本data.append((sample, category.name))  # 将文本及其类别添加到data列表中return data# 调用generate_data函数生成模拟数据集
train_data = generate_data(100)  # 为每个类别生成100个训练样本
test_data = generate_data(6)     # 生成少量(6个)测试样本用于演示'''
train_data = 
[('明天上海有小雨,记得带伞。', 'Weather Forecast'),('明天上海有小雨,记得带伞。', 'Weather Forecast'),('今天北京晴转多云,气温20-25度。', 'Weather Forecast'),('今天北京晴转多云,气温20-25度。', 'Weather Forecast'),('今天北京晴转多云,气温20-25度。', 'Weather Forecast'),('明天上海有小雨,记得带伞。', 'Weather Forecast'),('明天上海有小雨,记得带伞。', 'Weather Forecast'),('明天上海有小雨,记得带伞。', 'Weather Forecast'),('今天北京晴转多云,气温20-25度。', 'Weather Forecast'),]
'''from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from torch.utils.data import DataLoader, TensorDataset
import torch
import torch.nn.functional as F# 步骤1: 定义类别到标签的映射
label_map = {category.name: index for index, category in enumerate(categories)}
num_labels = len(categories)  # 类别总数# 步骤2: 初始化BERT分词器和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=num_labels)# 步骤3: 准备数据集
def encode_texts(texts, labels):# 对文本进行编码,得到BERT模型需要的输入格式encodings = tokenizer(texts, truncation=True, padding=True, return_tensors='pt')# 将标签名称转换为对应的索引label_ids = torch.tensor([label_map[label] for label in labels])return encodings, label_idsdef prepare_data(data):texts, labels = zip(*data)  # 解压数据encodings, label_ids = encode_texts(texts, labels)  # 编码数据dataset = TensorDataset(encodings['input_ids'], encodings['attention_mask'], label_ids)  # 创建数据集return DataLoader(dataset, batch_size=8, shuffle=True)  # 创建数据加载器# 步骤4: 准备训练和测试数据
train_loader = prepare_data(train_data)
test_loader = prepare_data(test_data)# 步骤5: 定义训练和评估函数
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)def train_epoch(model, data_loader, optimizer):model.train()total_loss = 0for batch in data_loader:optimizer.zero_grad()input_ids, attention_mask, labels = batchinput_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.losstotal_loss += loss.item()loss.backward()optimizer.step()return total_loss / len(data_loader)def evaluate(model, data_loader):model.eval()total_acc = 0total_count = 0with torch.no_grad():for batch in data_loader:input_ids, attention_mask, labels = batchinput_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)outputs = model(input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs.logits, dim=1)total_acc += (predictions == labels).sum().item()total_count += labels.size(0)return total_acc / total_count# 步骤6: 训练模型
optimizer = AdamW(model.parameters(), lr=2e-5)for epoch in range(3):  # 训练3个epochtrain_loss = train_epoch(model, train_loader, optimizer)acc = evaluate(model, test_loader)print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Test Accuracy: {acc*100:.2f}%')# 步骤7: 使用微调后的模型进行预测
def predict(text):encodings = tokenizer(text, truncation=True, padding=True, return_tensors='pt')input_ids = encodings['input_ids'].to(device)attention_mask = encodings['attention_mask'].to(device)with torch.no_grad():outputs = model(input_ids, attention_mask=attention_mask)predicted_class_id = torch.argmax(outputs.logits).item()return categories[predicted_class_id].name# 预测一个新文本
new_text = ["明天的天气怎么样?"]  # 注意这里是一个列表
predicted_category = predict(new_text)
print(f'The predicted category for the new text is: {predicted_category}')

这篇关于bert文本分类微调笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085540

相关文章

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学