动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14模型构造

import torch
from torch import nn
from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的
net1 = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10))
"""
nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 
它维护了一个由Module组成的有序列表。 
注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 
另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 
这实际上是net.__call__(X)的简写。这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
"""
X1 = torch.rand(2,20)
print(net1(X1))#自定义块
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数paramssuper().__init__()self.hidden = nn.Linear(20, 256) #隐藏层self.out = nn.Linear(256, 10) #输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
X2 = torch.rand(2,20)  
net2 = MLP()
print(net2(X2))#顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,# 同时列出数据和数据下标for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = module# _modules的主要优点是:# 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。# _modules 是 PyTorch 中 nn.Module 类的一个属性,用于自动管理和存储模型的子模块。def forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return XX3 = torch.rand(2,20)
#MySequential的用法与之前为Sequential类编写的代码相同
net3 = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net3(X3))#在前向传播函数中执行代码
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20,20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X = X / 2return X.sum()X4 = torch.rand(2,20)
net4 = FixedHiddenMLP()
print(net4(X4))#混合搭配各种组合块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))X5 = torch.rand(2,20)
net5 = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(net5(X5))"""
tensor([[ 0.0843, -0.1867,  0.0457,  0.1082, -0.0236, -0.1245, -0.0184,  0.0233,0.1765, -0.1390],[ 0.0129, -0.1441,  0.1156, -0.0327,  0.0044, -0.0510,  0.0715, -0.0162,        0.0137, -0.1148]], grad_fn=<AddmmBackward>)
tensor([[-0.1180,  0.0799, -0.0260,  0.0529,  0.0055, -0.1481,  0.1311, -0.1334,        0.1224,  0.0713],[-0.0610,  0.0789, -0.0321,  0.0154,  0.0246, -0.1857,  0.0652, -0.0461,        0.1029,  0.1205]], grad_fn=<AddmmBackward>)
tensor([[-0.0571, -0.1119,  0.0851,  0.1362, -0.0945,  0.0078,  0.2157, -0.1273,        -0.0017,  0.1981],[-0.0049, -0.0103,  0.0114, -0.0101, -0.1034,  0.0204,  0.1531,  0.0481,        0.1361, -0.0403]], grad_fn=<AddmmBackward>)
tensor(0.3121, grad_fn=<SumBackward0>)
tensor(0.1369, grad_fn=<SumBackward0>)
"""

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085295

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷