动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14模型构造

import torch
from torch import nn
from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的
net1 = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10))
"""
nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 
它维护了一个由Module组成的有序列表。 
注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 
另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 
这实际上是net.__call__(X)的简写。这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
"""
X1 = torch.rand(2,20)
print(net1(X1))#自定义块
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数paramssuper().__init__()self.hidden = nn.Linear(20, 256) #隐藏层self.out = nn.Linear(256, 10) #输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
X2 = torch.rand(2,20)  
net2 = MLP()
print(net2(X2))#顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,# 同时列出数据和数据下标for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = module# _modules的主要优点是:# 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。# _modules 是 PyTorch 中 nn.Module 类的一个属性,用于自动管理和存储模型的子模块。def forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return XX3 = torch.rand(2,20)
#MySequential的用法与之前为Sequential类编写的代码相同
net3 = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net3(X3))#在前向传播函数中执行代码
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20,20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X = X / 2return X.sum()X4 = torch.rand(2,20)
net4 = FixedHiddenMLP()
print(net4(X4))#混合搭配各种组合块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))X5 = torch.rand(2,20)
net5 = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(net5(X5))"""
tensor([[ 0.0843, -0.1867,  0.0457,  0.1082, -0.0236, -0.1245, -0.0184,  0.0233,0.1765, -0.1390],[ 0.0129, -0.1441,  0.1156, -0.0327,  0.0044, -0.0510,  0.0715, -0.0162,        0.0137, -0.1148]], grad_fn=<AddmmBackward>)
tensor([[-0.1180,  0.0799, -0.0260,  0.0529,  0.0055, -0.1481,  0.1311, -0.1334,        0.1224,  0.0713],[-0.0610,  0.0789, -0.0321,  0.0154,  0.0246, -0.1857,  0.0652, -0.0461,        0.1029,  0.1205]], grad_fn=<AddmmBackward>)
tensor([[-0.0571, -0.1119,  0.0851,  0.1362, -0.0945,  0.0078,  0.2157, -0.1273,        -0.0017,  0.1981],[-0.0049, -0.0103,  0.0114, -0.0101, -0.1034,  0.0204,  0.1531,  0.0481,        0.1361, -0.0403]], grad_fn=<AddmmBackward>)
tensor(0.3121, grad_fn=<SumBackward0>)
tensor(0.1369, grad_fn=<SumBackward0>)
"""

这篇关于动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085295

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的