电影数据集关联分析及FP-Growth实现

2024-06-22 16:04

本文主要是介绍电影数据集关联分析及FP-Growth实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1)数据预处理

我们先对数据集进行观察,其属性为’movieId’         ‘title’ ‘genres’,其中’movieId’为电影的序号,但并不完整,‘title’为电影名称及年份,‘genres’为电影的分类标签。因此电影的分类标签可以作为我们研究此数据集关联分析的文本数据。

我们可以看到电影的分类标签在同一个电影下不只有一个,且用’|’分开,因此我们对数据进行以下处理:

import pandas as pd
import csv
with open("movies.csv", mode="r", encoding='gb18030', errors='ignore') as file:csv_reader = csv.reader(file)next(csv_reader) # 跳过表头li = []for row in csv_reader:li.append(row[2].split("|"))

导入必要库,读取csv第三列去表头的文件数据,并且进行文本分割,将分割完的数据存储进列表里,作为后面算法进行关联分析的数据集。下图是处理完的数据集部分数据:

(2)代码

import pandas as pd # 导入必要库
import csv
from itertools import combinationsli = []
k = 0
with open("movies.csv", mode="r", encoding='gb18030', errors='ignore') as file:csv_reader = csv.reader(file)next(csv_reader) # 跳过表头for row in csv_reader:li.append(row[2].split("|")) # 处理第三列数据# print(li)
# 设置最小支持度和最小置信度阈值
min_support = 0.05
min_confidence = 0.5
# 统计每个项的支持度
item_support = {}
for transaction in li:for item in transaction:if item not in item_support:item_support[item] = 0item_support[item] += 1
# 计算总事务数
total_transactions = len(li)
# print(item_support)
# 计算频繁项集
frequent_itemsets = {}
for item, support in item_support.items():if support / total_transactions >= min_support: # 即该项集在事务数据库中出现frequent_itemsets[(item,)] = support / total_transactions
# 生成候选项集并迭代生成频繁项集
k = 2
while True:candidates = set() # 存储所有可能的项集for itemset in frequent_itemsets.keys():for item in itemset:candidates.add(item)# 生成候选项集candidates = list(combinations(candidates, k)) # 生成所有可能的k项集# 统计候选项集的支持度candidate_support = {}for transaction in li:for candidate in candidates:if set(candidate).issubset(set(transaction)):if candidate not in candidate_support:candidate_support[candidate] = 0candidate_support[candidate] += 1# 更新频繁项集frequent_itemsets_k = {}for candidate, support in candidate_support.items():if support / total_transactions >= min_support:frequent_itemsets_k[candidate] = support / total_transactions# 如果没有频繁项集则停止迭代if not frequent_itemsets_k:breakfrequent_itemsets.update(frequent_itemsets_k)k += 1
# print(frequent_itemsets)
# 生成关联规则
rules = []
for itemset in frequent_itemsets.keys():if len(itemset) >= 2:for i in range(1, len(itemset)):for combination in combinations(itemset, i):X = combinationY = tuple(set(itemset) - set(combination))confidence = frequent_itemsets[itemset] / frequent_itemsets[X]if confidence >= min_confidence:rules.append((X, Y, frequent_itemsets[itemset], confidence))# return frequent_itemsets, rulesprint("频繁项集和对应的支持度:")
for itemset, support in frequent_itemsets.items():print("{}: Support = {:.2f}".format(itemset, support))
# 输出关联规则和置信度
print("\n关联规则和置信度:")
for X, Y, support, confidence in rules:print("{} => {}: Support = {:.2f}, Confidence = {:.2f}".format(X, Y, support, confidence))

(3)输出结果截图

(4) FP-Growth

import pandas as pd # 导入必要库
import csv
from itertools import combinationsli = []
k = 0
with open("movies.csv", mode="r", encoding='gb18030', errors='ignore') as file:csv_reader = csv.reader(file)next(csv_reader) # 跳过表头for row in csv_reader:li.append(row[2].split("|")) # 处理第三列数据# print(li)
# 设置最小支持度和最小置信度阈值
min_support = 0.05
min_confidence = 0.5
# 统计每个项的支持度
item_support = {}
for transaction in li:for item in transaction:if item not in item_support:item_support[item] = 0item_support[item] += 1
# 计算总事务数
total_transactions = len(li)
# print(item_support)
# 计算频繁项集
frequent_itemsets = {}
for item, support in item_support.items():if support / total_transactions >= min_support: # 即该项集在事务数据库中出现frequent_itemsets[(item,)] = support / total_transactions
# 生成候选项集并迭代生成频繁项集
k = 2
while True:candidates = set() # 存储所有可能的项集for itemset in frequent_itemsets.keys():for item in itemset:candidates.add(item)# 生成候选项集candidates = list(combinations(candidates, k)) # 生成所有可能的k项集# 统计候选项集的支持度candidate_support = {}for transaction in li:for candidate in candidates:if set(candidate).issubset(set(transaction)):if candidate not in candidate_support:candidate_support[candidate] = 0candidate_support[candidate] += 1# 更新频繁项集frequent_itemsets_k = {}for candidate, support in candidate_support.items():if support / total_transactions >= min_support:frequent_itemsets_k[candidate] = support / total_transactions# 如果没有频繁项集则停止迭代if not frequent_itemsets_k:breakfrequent_itemsets.update(frequent_itemsets_k)k += 1
# print(frequent_itemsets)
# 生成关联规则
rules = []
for itemset in frequent_itemsets.keys():if len(itemset) >= 2:for i in range(1, len(itemset)):for combination in combinations(itemset, i):X = combinationY = tuple(set(itemset) - set(combination))confidence = frequent_itemsets[itemset] / frequent_itemsets[X]if confidence >= min_confidence:rules.append((X, Y, frequent_itemsets[itemset], confidence))# return frequent_itemsets, rulesprint("频繁项集和对应的支持度:")
for itemset, support in frequent_itemsets.items():print("{}: Support = {:.2f}".format(itemset, support))
# 输出关联规则和置信度
print("\n关联规则和置信度:")
for X, Y, support, confidence in rules:print("{} => {}: Support = {:.2f}, Confidence = {:.2f}".format(X, Y, support, confidence))

这篇关于电影数据集关联分析及FP-Growth实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084756

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配