动态规划02(Leetcode62、63、343、96)

2024-06-22 15:20
文章标签 动态 规划 02 96 63 343 leetcode62

本文主要是介绍动态规划02(Leetcode62、63、343、96),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:

https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html

62. 不同路径

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

思路分析:

本题思路简单,按照动规五步即可实现。

状态压缩:二维 ——> 一维

代码实现:

//动规
//1.dp[i][j]:到达点(i,j)的路径数
class Solution {public int uniquePaths(int m, int n) {int[][] dp=new int [m][n];//3.初始化for(int i=0;i<m;i++){dp[i][0]=1;}for(int j=0;j<n;j++){dp[0][j]=1;}//4.遍历顺序for(int i=1;i<m;i++){//行for(int j=1;j<n;j++){//列//2.递推公式dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];        }
}//状态压缩
class Solution {public int uniquePaths(int m, int n) {int[] dp=new int[n];Arrays.fill(dp,1);//第一行只有一条路径到for(int i=1;i<m;i++){for(int j=1;j<n;j++){//第一列也只有一条路dp[j]+=dp[j-1];//dp[j]=dp[j](上方来)-dp[j-1](左边来)}}return dp[n-1];}
}

 63. 不同路径 II

题目描述:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

思路分析:

整体思路与上题一样。

区别:本题在初始化和遍历过程中增加障碍物的条件判断即可。

代码实现:

class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m=obstacleGrid.length;int n=obstacleGrid[0].length;int[][] dp=new int[m][n];if(obstacleGrid[m-1][n-1]==1 || obstacleGrid[0][0]==1) return 0;for(int i=0;i<m && obstacleGrid[i][0]==0;i++){dp[i][0]=1;}for(int j=0;j<n&&obstacleGrid[0][j]==0;j++){dp[0][j]=1;}for(int i=1;i<m;i++){for(int j=1;j<n;j++){if(obstacleGrid[i][j]==1){dp[i][j]=0;continue;}dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
}//压缩
class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int m=obstacleGrid.length;int n=obstacleGrid[0].length;int[] dp=new int[n];for(int j=0;j<n&&obstacleGrid[0][j]==0;j++){//第一行dp[j]=1;}for(int i=1;i<m;i++){for(int j=0;j<n;j++){if(obstacleGrid[i][j]==1){dp[j]=0;}else if(j!=0){dp[j]+=dp[j-1];}}}return dp[n-1];}
}

343. 整数拆分

题目描述:

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

思路分析:

状态转移方程=拆成2个数 + 拆成3个数及以上

初始化 dp[2]=1 

优化:j 遍历到 i/2 即可,再往后就重复遍历了

代码实现:

//dp[i]:数i拆分后的数乘积最大值为dp[i]
class Solution {public int integerBreak(int n) {if(n==2) return 1;int[] dp=new int[n+1];dp[2]=1;for(int i=3;i<=n;i++){for(int j=1;j<=i/2;j++){dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));//j*(i-j)拆成两数//j*dp[i-j]拆成两数以上}}return dp[n];}
}

96. 不同的二叉搜索树

题目描述:

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

思路分析:

初始化:空节点对应一种情况,1个节点对应一种情况

递推公式:头结点从1到n遍历,将每个情况相加

代码实现:

class Solution {public int numTrees(int n) {if(n==1) return 1;int[] dp=new int[n+1];dp[0]=1;dp[1]=1;for(int i=2;i<=n;i++){for(int j=1;j<=i;j++){//以j为头结点dp[i]+=dp[j-1]*dp[i-j];//左*右}}return dp[n];}
}

这篇关于动态规划02(Leetcode62、63、343、96)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084668

相关文章

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL