【C++】平衡二叉树(AVL树)的实现

2024-06-22 11:52
文章标签 二叉树 c++ 实现 平衡 avl

本文主要是介绍【C++】平衡二叉树(AVL树)的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、AVL树的概念
  • 二、AVL树的实现
    • 1、AVL树的定义
    • 2. 平衡二叉树的插入
      • 2.1 按照二叉排序树的方式插入并更新平衡因子
      • 2.2 AVL树的旋转
        • 2.2.1 新节点插入较高左子树的左侧(LL平衡旋转)
        • 2.2.2 新节点插入较高右子树的右侧(RR平衡旋转)
        • 2.2.3 新节点插入较高左子树的右侧(LR平衡旋转)
        • 2.2.4 新节点插入较高右子树的左侧(RL平衡旋转)
        • 2.2.5 总结
    • 3 平衡二叉树的删除(了解即可)
    • 4 平衡二叉树的验证
  • 三、平衡二叉树的效率分析

一、AVL树的概念

二叉排序树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
为了避免树的高度增长过快,降低二叉排序树的性能,规定在插入和删除结点时,要保证任意结点的左、右子树高度差的绝对值不超过1,将这样的二叉树称为平衡二叉树,也称AVL树。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)在这里插入图片描述

二、AVL树的实现

1、AVL树的定义

AVL树结点的定义:

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;		// 使用三叉链方便后续处理,但要记得维护pair<K, V> _kv;					// 保存键值对int _bf;						// 平衡因子
};

2. 平衡二叉树的插入

2.1 按照二叉排序树的方式插入并更新平衡因子

AVL树就是在二叉排序树的基础上加上了平衡因子,因此AVL树也可以看成是二叉排序树。那么AVL树的插入过程可以分为两步:
(1) 按照二叉排序树的方法插入新结点
(2) 调整结点的平衡因子

bool Insert(const pair<K, V>& kv)
{// 先按照二叉排序树的方法进行结点插入if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while(cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;}else{parent->_right = cur;}cur->_parent = parent;// 新结点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否// 破坏了AVL树的平衡性while (parent){/*cur插入后,parent的平衡因子一定需要调整,在插入之前,parent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可*/if (parent->_left == cur){--parent->_bf;}else{++parent->_bf;}/*此时:parent的平衡因子可能有三种情况:0,正负1, 正负21. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以parent为根的树的高度增加,需要继续向上更新3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/if (0 == parent->_bf){break;}else if (1 == parent->_bf || -1 == parent->_bf){cur = cur->_parent;parent = parent->_parent;}else if (2 == parent->_bf || -2 == parent->_bf){// 旋转处理}else{// 如果平衡因子不是以上几种情况,说明代码逻辑错误assert(false);}}return true;
}

2.2 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:LL平衡旋转(右旋),RR平衡旋转(左旋),LR平衡旋转(先左旋后右旋),RL平衡旋转(先右旋后左旋)

2.2.1 新节点插入较高左子树的左侧(LL平衡旋转)

在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。

在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树
void RotateR(Node* parent)
{// subL:parent的左孩子// subLR:parent的左孩子的右孩子,注意:该点可能不存在Node* subL = parent->_left;Node* subLR = subL->_right;subL->_right = parent;parent->_left = subLR;Node* ppnode = parent->_parent;		// 记录parent的父结点,用于连接新的子树parent->_parent = subL;if (subLR){subLR->_parent = parent;}if (ppnode == nullptr){_root = subL;_root->_parent = nullptr;}else {if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}// 根据调整后的结构更新部分节点的平衡因子subL->_bf = parent->_bf = 0;
}
2.2.2 新节点插入较高右子树的右侧(RR平衡旋转)

在这里插入图片描述
具体实现参考右旋即可。

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;subR->_left = parent;parent->_right = subRL;Node* ppnode = parent->_parent;		// 记录parent的父结点parent->_parent = subR;if (subRL){subRL->_parent = parent;}if (ppnode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}parent->_bf = subR->_bf = 0;
}
2.2.3 新节点插入较高左子树的右侧(LR平衡旋转)

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

void RotateLR(Node* parent)
{// subL:parent的左孩子// subLR:parent的左孩子的右孩子,注意:该点可能不存在Node* subL = parent->_left;Node* subLR = subL->_right;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (1 == bf){subL->_bf = -1;}else if (-1 == bf){parent->_bf = 1;}
}
2.2.4 新节点插入较高右子树的左侧(RL平衡旋转)

在这里插入图片描述
参考右左双旋。

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (1 == bf){parent->_bf = -1;}else if (-1 == bf){subR->_bf = 1;}
}
2.2.5 总结

假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑:

  1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR
    当subR的平衡因子为1时,执行左单旋
    当subR的平衡因子为-1时,执行右左双旋
  2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL
    当subL的平衡因子为-1是,执行右单旋
    当subL的平衡因子为1时,执行左右双旋

旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

3 平衡二叉树的删除(了解即可)

因为AVL树也是二叉排序树,可按照二叉排序树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
平衡二叉树删除操作的具体步骤:

  1. 先按照二叉排序树的方式删除结点
  2. 一路向上找到最小不平衡子树,找不到就结束
  3. 找最小不平衡子树下,最高的儿子和孙子
  4. 根据孙子的位置,调整平衡
    • 孙子在LL:右单旋
    • 孙子在RR:左单旋
    • 孙子在LR:先左旋再右旋
    • 孙子再RL:先右旋再左旋
  5. 如果不平衡向上传导,继续第二步
    • 对最小不平衡子树的旋转可能导致树变矮,从而导致上层祖先不平衡

4 平衡二叉树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    • 节点的平衡因子是否计算正确
// 求二叉树的高度
int _Height(Node* root)
{if (root == nullptr){return 0;}int leftH = _Height(root->_left);int rightH = _Height(root->_right);return leftH > rightH ? leftH + 1 : rightH + 1;
}
// 验证平衡树
bool _Isbalance(Node* root)
{if (root == nullptr){return true;}int leftH = _Height(root->_left);int rightH = _Height(root->_right);if (rightH - leftH != root->_bf){cout << root->_kv.first << "结点平衡因子异常" << endl;return false;}return rightH - leftH < 2&& _Isbalance(root->_left)&& _Isbalance(root->_right);
}

三、平衡二叉树的效率分析

在平衡二叉树上进行查找的过程与二叉排序树相同。因此,在查找过程中,进行关键字的比较次数不超过树的深度。假设以 n h n_h nh表示深度为h的平衡二叉树中含有的最少结点数。 n 0 = 0 , n 1 = 1 , n 2 = 2 n_0=0,n_1=1,n_2=2 n0=0,n1=1,n2=2,并且有 n h = n h − 2 + n h − 1 + 1 n_h=n_{h-2}+n_{h-1}+1 nh=nh2+nh1+1含有n个结点的平衡二叉树的最大深度为 O ( l o g 2 n ) O(log_2n) O(log2n),因此平均查找效率为 O ( l o g 2 n ) O(log_2n) O(log2n)
但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

这篇关于【C++】平衡二叉树(AVL树)的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084218

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont