【Pandas驯化-11】一文搞懂Pandas中的分组函数groupby与qcut、fillna使用

2024-06-22 11:52

本文主要是介绍【Pandas驯化-11】一文搞懂Pandas中的分组函数groupby与qcut、fillna使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Pandas驯化-11】一文搞懂Pandas中的分组函数groupby与qcut、fillna使用
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🎯 1. 基本介绍
  • 💡 2. 使用方法
      • 2.1 cut函数使用
      • 2.2 qcut函数使用
      • 2.3 高级用法
      • 2.4 和fillna连用
  • 🔍 3. 注意事项
  • 🔧 4. 总结

下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 1. 基本介绍

  对于分箱操作,在处理连续数据的特征工程时经常会用到,特别是在用户评分模型里面用的贼多,但是使用最优分箱进行数值离散化比较多。
  在数据分析中,经常需要根据某些特征将数据分组,并在每个组内执行计算或分析。Pandas 提供了 groupby 功能来实现这一点。此外,qcut 可用于将连续数据分箱为离散区间,而 fillna 用于填充数据中的缺失值。

💡 2. 使用方法

2.1 cut函数使用

  在进行特征工程时,经常需要按照一定的规则进行统计特征提取,这个gropuby操作和hadoop的mapreduce有一定的相似,groupby可以理解为对数据进行拆分再进行应用再进行合并,当理解了之前介绍的几个骚函数以及一些常用的统计函数然后如果能想象的到groupby之后的数据结构,基本就可以开始你无限的骚操作了,不管是解决产品经理的数据报告需求还是特征提取基本问题不大了,下面介绍一些个人比较喜欢用的操作:

import pandas as pddf = pd.DataFrame({'a': ['A', 'B', 'A', 'C', 'B', 'C', 'A'],'b': [1, 2, 3, 4, 5, 6, 7],'c': [10, 20, 30, 40, 50, 60, 70]
})a         b
0  12.05155  49.744408
1  67.84977  33.425537
2  53.72848  91.631309
3  45.52130  22.993242
4  28.46236  53.725090

  使用 pd.cut列进行分箱。

# 为等距分箱
bins_1 = pd.cut(df['a'], 4)
print("等距分箱结果:")
print(bins_1.value_counts())
等距分箱结果:a  count
0  (29.071, 52.552]     31
1  (52.552, 76.032]     25
2   (5.497, 29.071]     22
3  (76.032, 99.513]     22

2.2 qcut函数使用

  使用 pd.qcut列进行分箱,注意里面的参数labels为是否显示具体为:

# 为等频分箱
bins_2 = pd.qcut(df['a'], 4)
print("\n等频分箱结果:")
print(bins_2.value_counts())等频分箱结果:a  count
0   (0.197, 28.495]     25
1  (28.495, 49.768]     25
2   (49.768, 72.88]     25
3   (72.88, 98.583]     25

2.3 高级用法

   按箱子分组并应用统计函数。使用 groupby 和 apply 对 ‘b’ 列按箱子分组,并应用 help_static 函数。具体的用法如下所示:

def help_static(group):return {'max': group.max(),'mean': group.mean(),'count': group.count()}
# 等距分箱统计
temp_1 = df.groupby(bins_1).apply(help_static).unstack()
print("\n等距分箱统计结果:")
print(temp_1)# 等频分箱统计
temp_2 = df.groupby(bins_2).apply(help_static).unstack()
print("\n等频分箱统计结果:")
print(temp_2)等距分箱统计结果:max       mean  count
0  89.668916  42.667183    25
1  96.302655  55.310322    25
2  95.345022  59.836174    25
3  97.875800  76.837120    25等频分箱统计结果:max       mean  count
0   98.989428  46.483636    25
1   99.994949  67.079796    25
2  100.000000  87.500000    25
3   99.999998  98.000000     1  # 注意:最顶端可能只有一个数据点

  

2.4 和fillna连用

  • 对于空值,在进行特征工程时,如果空值缺比较多的时候,常将这一列删除,如果缺的20%左右,要不就不对其进行处理,
  • 将它当做一种情况看待,或者对空值进行填充,为了更加的使填充值得误差尽可能得小,如果一个id有多条样本,则可以对其进行分组后在填充,不然就用整体分布值进行填充。
  • 在数据分析中,处理缺失值是一个常见且重要的任务。Pandas 提供了多种方法来填充缺失值,包括使用统计方法(如中位数)或数学模型(如线性插值)。
import pandas as pd
import numpy as np# 创建包含缺失值的 DataFrame
df = pd.DataFrame({'a': ['A', 'B', 'A', 'B', 'A', 'B', 'A'],'b': [1, 2, np.nan, 4, 5, np.nan, 7]
})# 对列a分组后对列b中的空值用用中位数填充 
fuc_nan_median = lambda x: x.fillna(x.median())# 对列 'b' 分组后填充缺失值
df_median_filled = df.groupby('a')['b'].apply(fuc_nan_median).reset_index()
print(df_median_filled)a    b
0  A  4.0
1  B  3.0
2  A  4.0
3  B  3.0
4  A  4.0
5  B  3.0
6  A  4.0

  定义一个 lambda 函数,使用插值方法填充缺失值。

func_nan_interpolate = lambda x: x.interpolate()# 对列 'b' 分组后使用线性插值填充缺失值
df_interpolated = df.groupby('a')['b'].apply(func_nan_interpolate).reset_index()
print(df_interpolated)a    b
0  A  1.0
1  B  2.0
2  A  3.5
3  B  4.0
4  A  5.5
5  B  NaN # 注意:由于B组最后一个值后没有数据,插值无法进行
6  A  7.0

🔍 3. 注意事项

  对上述的各个函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • 在使用 fillna 时,确保使用中位数或其他统计量填充是有意义的,并且适用于数据的分布特性。
  • interpolate 方法提供了多种插值方法,如 ‘linear’, ‘polynomial’ 等,可以通过 method 参数指定。
  • 使用 groupby 后,如果直接对结果使用 reset_index,可能会得到一个额外的列(如 ‘level_1’),这列可能需要被删除。
  • 在使用 pd.cut 或 pd.qcut 时,labels=False 表示返回的分箱标签是数字而不是字符串。
  • groupby.apply 可以应用任何函数,包括自定义函数,返回的结果将根据函数返回的数据结构进行调整。
  • 使用 unstack 可以调整多级列索引的布局,使其更易于理解。

🔧 4. 总结

  本文介绍了如何使用 Pandas 对数值型数据进行分箱,并在每个箱子中统计另一列的统计特征。通过实际的代码示例,展示了等距分箱和等频分箱的方法,以及如何定义自定义函数来计算所需的统计量。这些技术在数据分析中非常有用,特别是在处理分布不均匀的数据时。希望这篇博客能够帮助你更好地理解并应用 Pandas 的分箱和分组统计功能。
  展示了如何使用中位数和插值方法来填充缺失值,并提供了相应的代码示例和输出结果。这些技术对于数据清洗和准备阶段非常重要,可以帮助提高数据分析的质量和准确性。希望这篇博客能够帮助你更好地理解并应用这些功能。

这篇关于【Pandas驯化-11】一文搞懂Pandas中的分组函数groupby与qcut、fillna使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084216

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图