Studying-代码随想录训练营day16| 513找到左下角的值、112.路径总和、106从中序与后序遍历序列构造二叉树

本文主要是介绍Studying-代码随想录训练营day16| 513找到左下角的值、112.路径总和、106从中序与后序遍历序列构造二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十六天,二叉树part03💪💪💪,编程语言:C++

目录

513找到左下角的值

112.路径总和

113.路径总和II

106从中序与后序遍历序列构造二叉树 

105.从前序与中序遍历序列构造二叉树 

总结 


513找到左下角的值

文档讲解:代码随想录找到左下角的值

视频讲解:手撕找到左下角的值

题目:

学习:注意是找到最底层最左边的值,而不是找到最左边的左节点。两者是有很大差别的,对于第二个示例就能看出,并且最底层最左边的值也未必是左节点,如果示例2中4有一个右节点,那最底层最左边的值就是4的右节点了。

代码:因此本题采用层序遍历最好理解,每次从左到右遍历,记入每次遍历的第一个节点,就是该层最左边的节点,直到找到最后一层。

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;if(root != nullptr) que.push(root);int result;while(!que.empty()) {int size = que.size();result = que.front()->val;while(size--) {TreeNode* node = que.front();que.pop();if(node->left) que.push(node->left);if(node->right) que.push(node->right); }}return result;}
};

代码:本题还可以采用递归遍历的方式,使用前序,中序,后序都可以,这三种遍历方式都保证了先遍历左子树,再遍历右子树。注意每次更新result,只在进入到一个更大的深度,这样能保证记录的是最左边的值。

class Solution {
public://设置两个全局变量,保存最大深度和答案值,当然本题也可以将其放入函数当中,使用引用的方式int maxDepth = INT_MIN;int result;void traversal(TreeNode* cur, int depth) {if(cur->left == nullptr && cur->right == nullptr) {if (depth > maxDepth) {maxDepth = depth;result = cur->val;}}//注意必须得先遍历左边,左优先遍历,能够保证在找到最后一层的时候,赋值最左边的节点if(cur->left) traversal(cur->left, depth + 1);if(cur->right) traversal(cur->right, depth + 1);}int findBottomLeftValue(TreeNode* root) {traversal(root, 0);return result;}
};

112.路径总和

文档讲解:代码随想录路径总和

视频讲解:手撕路径总和

题目:

学习:

  1. 依据本题的意思,我们在遍历过程中,需要遍历到叶子节点才终止。注意本题不适合进行值的大小判断,因为本题的节点数值和目标值都是有可能是正,有可能是负的,因此不好设置大小判断条件。
  2. 本题可以采取前序遍历的方式,同时在遍历的过程中,不是累加各节点数值,而是通过对目标值的相减,来不断逼近目标值,这样更加的直观,且能减少不必要的变量。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:bool traversal(TreeNode* root, int count) {//减掉当前节点的值count -= root->val;//确定终止条件,遍历到叶子结点if(root->left == nullptr && root->right == nullptr && count != 0) return false;if(root->left == nullptr && root->right == nullptr && count == 0) return true;//确定单层递归逻辑,同时保证遍历过程中root不为nullptr//count非引用方式,因此为自动进行回溯if (root->left) {if(traversal(root->left, count)) return true;} if (root->right) {if(traversal(root->right, count)) return true;}return false;}bool hasPathSum(TreeNode* root, int targetSum) {if (root == nullptr) return false;return traversal(root, targetSum);}
};

113.路径总和II

题目:

学习:

  1. 本题与上题不同的在于,要找到所有的数值之和等于目标值的路径。因此我们需要遍历所有的节点,同时要持续记录数值和路径两个变量。数值通过上题,我们知道可以通过目标值不断做减法来进行记录,路径则需要我们建立一个数组来进行保存。
  2. 本题还有一个值得注意的地方,我们在递归过程中如果需要不停改变一个变量,一般采用的是引用的方式。但其实也能采用全局变量的方式,将变量写在函数外,全局变量在递归中同样会不断的被改变。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public://构造两个全局变量,存储路径和结果,取代参数引用vector<vector<int>> result;vector<int> path;//遍历树的节点,因为结果都储存在两个vector数组中,因此不需要返回值void traversal (TreeNode* root, int sum) {//确定终止条件//找到叶子节点的时候进行判断if(root->left == nullptr && root->right == nullptr && sum == 0) {result.push_back(path);return;}//如果sum!=0 直接返回if(root->left == nullptr && root->right == nullptr) return;//确定单层递归逻辑if(root->left) {path.push_back(root->left->val);traversal(root->left, sum - root->left->val);//对路径进行回溯path.pop_back();}if(root->right) {path.push_back(root->right->val);traversal(root->right, sum - root->right->val);path.pop_back();}return;}vector<vector<int>> pathSum(TreeNode* root, int targetSum) {if(root == nullptr) return result;path.push_back(root->val);traversal(root, targetSum - root->val);return result;}
};

106从中序与后序遍历序列构造二叉树 

文档讲解:代码随想录从中序与后序遍历系列构造二叉树

视频讲解:手撕从中序与后序遍历序列构造二叉树

题目:

学习: 本题与KMP算法一样,都是数据结构中经典的例题之一。

  1. 依据后序遍历左右中的特点我们可以知道,最后一个节点一定是根节点。而根据中序遍历左中右的特点,当我们知道谁是根节点之后,在中序遍历中根节点左边的部分就为根节点的左子树,右边的部分就为根节点的右子树。
  2. 接着我们重复上述过程,当找到根节点的左子树和右子树有哪些节点后,我们在后序遍历中也能够把除最后一个节点(根节点)以外的点,分为左子树部分和右子树部分。相对的对于这两个部分而言,由于后序遍历左右中的特点,最后一个节点就为它们各自的根节点(整棵树的中间节点)。之后再从中序遍历中依次找到根节点的左右部分即可循环下去,直到确定所有节点的位置。
  3. 如果是在纸上进行作答的话,我们根据一次次循环就很容易能够把节点加上去。但是在代码中我们要十分注意递归循环的过程,不仅要设置递归三部曲,还要划分好每次循环过程中的左子树部分和右子树部分。

本题的代码过程可以分为六步:

  1. 如果数组大小为零,说明是空节点,返回
  2. 如果不为空,取后序遍历数组的最后一个元素作为根节点元素。
  3. 找到后序遍历数组最后一个元素在中序遍历数组的位置,作为左右子树切割点。
  4. 切割中序遍历数组,切成中序左数组和中序右数组。
  5. 切割后序遍历数组,注意这里分割的方法是通过第4部分割出的两个数组来进行分割的,因为中序遍历数组中,中序左数组的个数(左子树)一定和后序遍历数组中后序左数组(左子树)的个数是一样的,右子树同理。(其实我们在用纸笔解答的时候,也是通过中序遍历数组分割后的结果,来推导后序遍历数组中的左右子树部分)
  6. 递归处理左区间和右区间。

代码:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

代码:本题也可以通过设置下标来设置左右子树区间

 

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
private:// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;// 左闭右开的原则return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

105.从前序与中序遍历序列构造二叉树 

题目:

学习:本题和上一题一样,只不过后序换为前序遍历后,根节点的寻找变为了找前序遍历数组的第一个节点作为根节点,剩下的同样是依据需要划分不同左右子树区间,进行递归。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割前序数组// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)int leftPreorderBegin =  preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);int rightPreorderEnd = preorderEnd;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;}public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;// 参数坚持左闭右开的原则return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};

注:本题还能采用迭代的方式,等我二刷试试。

总结 

今天题目虽然不多,但是难度都很大,需要反复学习理解。

  1. 左下角的值要避免成为找最左边的左叶子节点的值。
  2. 路径总和要注意对路径中数值的处理,以及路径总和II中对每一条路径的保存和回溯,都需要注意。
  3. 从中序与后序遍历构造二叉树和从前序与中序遍历构造二叉树,理解上虽然没什么问题,但是代码书写上难度很大,还需要多加练习。

这篇关于Studying-代码随想录训练营day16| 513找到左下角的值、112.路径总和、106从中序与后序遍历序列构造二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083255

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python