openh264 宏块级码率控制源码分析

2024-06-22 03:12

本文主要是介绍openh264 宏块级码率控制源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

openh264 宏块级码率控制函数关系

在这里插入图片描述

宏块级核心函数分析

WelsRcMbInitGom函数

  1. 功能:openh264 码率控制框架中宏块级码率控制函数,根据是否启用GOM QP来决定如何设置宏块的QP值,以控制编码的质量和比特率。
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pCurMb: 指向当前宏块的指针,宏块是视频编码的基本单位。
    • pSlice: 指向当前切片的指针,切片是一系列连续宏块的集合。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • pCurLayer: 指向当前解码质量层的指针。
    • kuiChromaQpIndexOffset: 色度QP索引偏移量,用于调整色度通道的量化参数。
  • 主要逻辑:
    • 首先,获取当前宏块的比特流位置,并更新到切片覆盖码率控制结构中。
    • 如果全局优化码率控制(GOM QP)被启用:
      • 如果当前宏块是GOM的起始宏块(即其索引能被GOM的数量整除),并且不是切片的起始宏块,则增加复杂度指数。
      • 调用RcCalculateGomQp函数计算GOM的QP值。
      • 调用RcGomTargetBits函数计算GOM的目标比特数。
      • 调用RcCalculateMbQp函数计算当前宏块的QP值。
    • 如果GOM QP未启用:
      • 将当前宏块的亮度QP值设置为全局QP值。
      • 根据亮度QP值和色度QP索引偏移量,计算并设置色度QP值。
  • 关键功能:
    • 函数通过判断是否启用GOM QP来决定如何设置宏块的量化参数(QP),这影响编码后视频的质量和比特率。
    • 使用CLIP3_QP_0_51宏来确保QP值在有效范围内(0到51)。
  1. 源码
void WelsRcMbInitGom (sWelsEncCtx* pEncCtx, SMB* pCurMb, SSlice* pSlice) {SWelsSvcRc* pWelsSvcRc        = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc          = &pSlice->sSlicingOverRc;SDqLayer* pCurLayer           = pEncCtx->pCurDqLayer;const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;pSOverRc->iBsPosSlice = pEncCtx->pFuncList->pfGetBsPosition (pSlice);if (pWelsSvcRc->bEnableGomQp) {//calculate gom qp and target bits at the beginning of gomif (0 == (pCurMb->iMbXY % pWelsSvcRc->iNumberMbGom)) {if (pCurMb->iMbXY != pSOverRc->iStartMbSlice) {pSOverRc->iComplexityIndexSlice++;RcCalculateGomQp (pEncCtx, pSlice, pCurMb);}RcGomTargetBits (pEncCtx, pSlice);}RcCalculateMbQp (pEncCtx, pSlice, pCurMb);} else {pCurMb->uiLumaQp   = pEncCtx->iGlobalQp;pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (pCurMb->uiLumaQp + kuiChromaQpIndexOffset)];}}

RcCalculateGomQp函数

  1. 功能:计算宏块组的量化参数 qp 的具体实现
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pSlice: 指向当前切片的指针。
    • pCurMb: 指向当前宏块的指针,虽然在这段代码中没有直接使用。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • iBitsRatio: 用于计算比特率比例的变量。
  • 主要逻辑:
    • 计算剩余的比特数 iLeftBits,即目标比特数减去已使用的比特数。
    • 计算目标剩余比特数 iTargetLeftBits,考虑了当前GOM的已用比特数。
  • QP调整逻辑:
    • 如果剩余比特数小于或等于0,增加QP以降低质量,减少比特率的使用。
    • 否则,根据比特率比例 iBitsRatio 来调整QP:
      • 如果 iBitsRatio 小于 8409,增加QP 2。
      • 如果 iBitsRatio 在 8409 和 9439 之间,增加QP 1。
      • 如果 iBitsRatio 大于 10600,减少QP 1。
      • 如果 iBitsRatio 大于 11900,减少QP 2。
  • QP值的边界限制:
    • 使用 WELS_CLIP3 宏来确保计算出的QP值在允许的最小值和最大值之间。
  • 重置GOM比特计数器:
    • 将 iGomBitsSlice 重置为0,为下一个GOM的比特计数做准备。
  • 注释:
    • 注释中提到了一个可能的日志记录语句,但在这段代码中被注释掉了。
  • 设计目的:
    • 函数的目的是根据当前的编码比特率情况动态调整量化参数,以控制视频的质量和编码效率。
  • 关键功能:
    • 函数通过计算剩余比特数与目标比特数的比例,动态调整QP值,实现码率控制。
  1. 源码
void RcCalculateGomQp (sWelsEncCtx* pEncCtx, SSlice* pSlice, SMB* pCurMb) {SWelsSvcRc* pWelsSvcRc    = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc      = &pSlice->sSlicingOverRc;int64_t iBitsRatio        = 1;int64_t iLeftBits         = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;int64_t iTargetLeftBits   = iLeftBits + pSOverRc->iGomBitsSlice - pSOverRc->iGomTargetBits;if ((iLeftBits <= 0) || (iTargetLeftBits <= 0)) {pSOverRc->iCalculatedQpSlice += 2;} else {
//globe decisioniBitsRatio = 10000 * iLeftBits / (iTargetLeftBits + 1);if (iBitsRatio < 8409)              //2^(-1.5/6)*10000pSOverRc->iCalculatedQpSlice += 2;else if (iBitsRatio < 9439)         //2^(-0.5/6)*10000pSOverRc->iCalculatedQpSlice += 1;else if (iBitsRatio > 10600)        //2^(0.5/6)*10000pSOverRc->iCalculatedQpSlice -= 1;else if (iBitsRatio > 11900)        //2^(1.5/6)*10000pSOverRc->iCalculatedQpSlice -= 2;}pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice, pWelsSvcRc->iMinFrameQp,pWelsSvcRc->iMaxFrameQp);
// WelsLog (& (pEncCtx->sLogCtx), WELS_LOG_DEBUG,"iCalculatedQpSlice =%d,iBitsRatio = %d\n",pSOverRc->iCalculatedQpSlice,iBitsRatio);pSOverRc->iGomBitsSlice = 0;}

RcGomTargetBits函数

  1. 功能:在视频编码过程中为一个组(Group of Macroblocks,GOM)分配目标比特数。
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pSlice: 指向当前切片的指针。
  • 局部变量:
    • pWelsSvcRc: 指向当前依赖层的码率控制服务结构体的指针。
    • pWelsSvcRc_Base: 指向基础码率控制服务结构体的指针,可能用于比较或计算。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • iAllocateBits: 用于存储分配给当前GOM的比特数。
    • iSumSad: 用于累加GOM的总SAD(Sum of Absolute Differences)值。
    • iLastGomIndex: 表示最后一个GOM的索引。
    • iLeftBits: 表示剩余的比特数。
    • kiComplexityIndex: 表示当前GOM的复杂度指数。
  • 主要逻辑:
    • 计算最后一个GOM的索引 iLastGomIndex。
    • 计算剩余的比特数 iLeftBits。
    • 如果剩余比特数小于或等于0,将GOM的目标比特数设置为0并返回。
    • 如果当前复杂度指数等于最后一个GOM的索引,将所有剩余比特数分配给当前GOM。
    • 否则,计算从当前复杂度指数到最后一个GOM的SAD总和 iSumSad。
    • 根据SAD值按比例分配剩余比特数。
  • 比特分配策略:
    • 如果 iSumSad 为0,等比例分配剩余比特数。
    • 如果 iSumSad 不为0,根据当前GOM的SAD值占总SAD的比例来分配比特数。
  • 辅助函数:
    • RcJudgeBaseUsability: 用于判断基础码率控制服务结构体的可用性,其返回值可能用于计算。
  • 设计目的:
    • 函数的目的是根据宏块的复杂度和剩余的比特资源,动态地为每个GOM分配目标比特数,以优化视频质量和编码效率。
  • 关键功能:
    • 函数通过计算SAD值来评估宏块的复杂度,并据此分配比特数,实现码率控制。
  1. 源码
void RcGomTargetBits (sWelsEncCtx* pEncCtx, SSlice* pSlice) {SWelsSvcRc* pWelsSvcRc        = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SWelsSvcRc* pWelsSvcRc_Base   = NULL;SRCSlicing* pSOverRc          = &pSlice->sSlicingOverRc;int32_t iAllocateBits = 0;int32_t iSumSad = 0;int32_t iLastGomIndex = 0;int32_t iLeftBits = 0;const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice;int32_t i;iLastGomIndex  = pSOverRc->iEndMbSlice / pWelsSvcRc->iNumberMbGom;iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;if (iLeftBits <= 0) {pSOverRc->iGomTargetBits = 0;return;} else if (kiComplexityIndex >= iLastGomIndex) {iAllocateBits = iLeftBits;} else {pWelsSvcRc_Base = RcJudgeBaseUsability (pEncCtx);pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc;for (i = kiComplexityIndex + 1; i <= iLastGomIndex; i++) {iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i];}if (0 == iSumSad)iAllocateBits = WELS_DIV_ROUND (iLeftBits, (iLastGomIndex - kiComplexityIndex));elseiAllocateBits = WELS_DIV_ROUND ((int64_t)iLeftBits * pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex + 1],iSumSad);}pSOverRc->iGomTargetBits = iAllocateBits;
}

RcCalculateMbQp函数

  1. 功能:作用是在视频编码过程中为当前宏块(Macroblock, MB)计算量化参数(Quantization Parameter, QP)
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pSlice: 指向当前切片的指针。
    • pCurMb: 指向当前宏块的指针。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • iLumaQp: 存储计算得到的亮度QP值。
    • pCurLayer: 指向当前解码质量层的指针。
    • kuiChromaQpIndexOffset: 色度QP索引偏移量。
  • 主要逻辑:
    • 从切片覆盖码率控制结构中获取iCalculatedQpSlice计算得到的亮度QP值 iLumaQp。
    • 如果启用了自适应量化(bEnableAdaptiveQuant),则根据宏块的运动和纹理信息调整QP值。
  • 自适应量化:
    • 如果启用自适应量化,使用 pMotionTextureIndexToDeltaQp 数组,根据宏块的位置 MbXY 来获取QP调整值,并将其加到基础QP值iLumaQp上。
    • 调整后的QP值通过 WELS_CLIP3 宏确保在允许的范围内。
  • 色度QP计算:
    • 使用色度QP表 g_kuiChromaQpTable 和色度QP索引偏移量 kuiChromaQpIndexOffset 来计算色度QP值。
    • 色度QP值通过 CLIP3_QP_0_51 宏确保在0到51的范围内。
  • 宏块QP赋值:
    • 将计算得到的亮度QP和色度QP值赋给当前宏块 pCurMb。
  1. 源码
void RcCalculateMbQp (sWelsEncCtx* pEncCtx, SSlice* pSlice, SMB* pCurMb) {SWelsSvcRc* pWelsSvcRc        = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc          = &pSlice->sSlicingOverRc;int32_t iLumaQp               = pSOverRc->iCalculatedQpSlice;SDqLayer* pCurLayer           = pEncCtx->pCurDqLayer;const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {iLumaQp   = (int8_t)WELS_CLIP3 (iLumaQp +pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], pWelsSvcRc->iMinFrameQp,pWelsSvcRc->iMaxFrameQp);}pCurMb->uiChromaQp    = g_kuiChromaQpTable[CLIP3_QP_0_51 (iLumaQp + kuiChromaQpIndexOffset)];pCurMb->uiLumaQp      = iLumaQp;
}

WelsRcMbInfoUpdateGom函数

  1. 功能:通过收集和更新宏块的编码信息来帮助编码器动态调整编码参数,以优化视频质量和编码效率。
  2. 原理过程
  • 函数参数:
    • pEncCtx: 指向编码上下文的指针,包含编码过程中所需的全局信息。
    • pCurMb: 指向当前宏块的指针。
    • iCostLuma: 当前宏块的亮度成本,用于码率控制。
    • pSlice: 指向当前切片的指针。
  • 局部变量:
    • pWelsSvcRc: 指向服务层码率控制结构的指针。
    • pSOverRc: 指向切片覆盖码率控制结构的指针。
    • kiComplexityIndex: 复杂度指数,用于码率控制策略。
  • 主要逻辑:
    • 计算当前宏块的比特数iCurMbBits,即从切片开始到当前宏块的比特流位置差。
    • 更新切片的总比特数iFrameBitsSlice和GOM(Group of Macroblocks)的总比特数iGomBitsSlice。
  • 码率控制相关操作:
    • 累加当前宏块的亮度成本iCostLuma到对应复杂度指数的成本数组pGomCost中。
    • 如果当前宏块的比特数大于0,更新切片的总QP(量化参数)和宏块计数器。
  • 设计目的:
    • 该函数的目的是在编码过程中收集和更新宏块的相关信息,以便进行有效的码率控制。
  • 关键功能:
    • 函数通过更新宏块的比特数和亮度成本,为后续的码率控制决策提供数据支持。
  1. 源码
void WelsRcMbInfoUpdateGom (sWelsEncCtx* pEncCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) {SWelsSvcRc* pWelsSvcRc            = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];SRCSlicing* pSOverRc              = &pSlice->sSlicingOverRc;const int32_t kiComplexityIndex   = pSOverRc->iComplexityIndexSlice;int32_t iCurMbBits = pEncCtx->pFuncList->pfGetBsPosition (pSlice) - pSOverRc->iBsPosSlice;pSOverRc->iFrameBitsSlice += iCurMbBits;pSOverRc->iGomBitsSlice += iCurMbBits;pWelsSvcRc->pGomCost[kiComplexityIndex] += iCostLuma;if (iCurMbBits > 0) {pSOverRc->iTotalQpSlice += pCurMb->uiLumaQp;pSOverRc->iTotalMbSlice++;}
}

这篇关于openh264 宏块级码率控制源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083126

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与