生成模型的两大代表:VAE和GAN

2024-06-22 02:28
文章标签 模型 生成 两大 代表 gan vae

本文主要是介绍生成模型的两大代表:VAE和GAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成模型

给定数据集,希望生成模型产生与训练集同分布的新样本。对于训练数据服从\(p_{data}(x)\);对于产生样本服从\(p_{model}(x)\)。希望学到一个模型\(p_{model}(x)\)与\(p_{data}(x)\)尽可能接近。

这也是无监督学习中的一个核心问题——密度估计问题。有两种典型的思路:

  1. 显式的密度估计:显式得定义并求解分布\(p_{model}(x)\),如VAE。
  2. 隐式的密度估计:学习一个模型\(p_{model}(x)\),而无需显式定义它,如GAN。

VAE

AE

首先介绍下自编码器(Auto Encoder, AE),它将输入的图像X通过编码器encoder编码为一个隐向量(bottleneck)Z,然后再通过解码器decoder解码为重构图像X’,它将自己编码压缩再还原故称自编码。结构如下图所示:

在这里插入图片描述

以手写数字数据集MNIST为例,输入图像大小为28x28,通道数为1,定义隐向量的维度(latent_dim)为1 x N,N=20。经过编码器编码为一个长度为20的向量,再通过解码器解码为28x28大小的图像。将生成图像X’与原始图像X进行对比,计算重构误差,通过最小化误差优化模型参数:

\[Loss = distance(X, X’) \]

一般distance距离函数选择均方误差(Mean Square Error, MSE)。AE与PCA作用相同,通过压缩数据实现降维,还能把降维后的数据进行重构生成图像,但PCA的通过计算特征值实现线性变换,而AE则是非线性。

VAE

如果中间的隐向量的每一分量取值不是直接来自Encoder,而是在一个分布上进行采样,那么就是变分自编码器(Variational Auto Encoder,VAE),结构如下图所示:

在这里插入图片描述

还是上面的例子,这里的Z维度还是1 x 20,但是每一分量不是直接来自Encoder,而是在一个分布上进行采样计算,一般来说分布选择正态分布(当然也可以是其他分布)。每个正态分布的\(\mu\)与\(\sigma\)由Encoder的神经网络计算而来。关于Z上每一分量的计算,这里,\(\epsilon\)从噪声分布中随机采样得到。

\[z{(i,l)}=\mu{(i)}+\sigma{(i)}\cdot\epsilon{(l)}\space\mathrm{and}\space\epsilon^{(l)}\sim N(0,I) \]

在Encoder的过程中给定x得到z就是计算后验概率\(q_\phi(z|x)\),学习得到的z为先验分布\(p_\theta(z)\),Decoder部分根据z计算x的过程就是似然估计\(p_\theta(x|z)\),训练的目的也是最大化似然估计(给出了z尽可能得还原为x)。

边缘似然度\(p_\theta(x)=\int p_\theta(z)p_\theta(x|z)\,{\rm d}z\),边缘似然度又是每个数据点的边缘似然之和组成:\(\log p_\theta(x{(1)},\cdots,x{(N)})=\sum_{i=1}^N\log p_\theta(x^{(i)})\),可以被重写为:

\[\log p_\theta(x^{(i)})={\rm D_{KL}}(q_\phi(z|x{(i)})||p_\theta(z|x{(i)}))+{\cal L}(\theta,\phi;x^{(i)}) \]

\(p_\theta(z|x^{(i)})\)通常被假设为标准正态分布,等式右边第二项称为边缘似然估计的下界,可以写为:

\[\log p_\theta(x^{(i)})\ge{\cal L}(\theta,\phi;x^{(i)})=\mathbb{E}_{z\sim q_\phi(z|x)}[-\log q_\phi(z|x)+\log p_\theta(x|z)] \]

得到损失函数:

\[{\cal L}(\theta,\phi;x^{(i)})=-{\rm D_{KL}}(q_\phi(z|x^{(i)})||p_\theta(z))+\mathbb{E}_{z\sim q_\phi(z|x^{(i)})}[\log p_\theta(x^{(i)}|z)] \]

GAN

生成对抗网络(Generative Adversarial Nets, GAN)需要同时训练两个模型:生成器(Generator, G)和判别器(Discriminator, D)。生成器的目标是生成与训练集同分布的样本,而判别器的目标是区分生成器生成的样本和训练集中的样本,两者相互博弈最后达到平衡(纳什均衡),生成器能够以假乱真,判别器无法区分真假。

在这里插入图片描述

生成器和判别器最简单的应用就是分别设置为两个MLP。为了让生成器在数据x学习分布\(p_g\),定义一个噪声分布\(p_z(z)\),然后使用生成器\(G(z;\theta_g)\)将噪声映射为生成数据x’(\(\theta_g\)是生成器模型参数)。同样定义判别器\(D(x;\theta_d)\),输出为标量表示概率,代表输入的x来自数据还是\(p_g\)。训练D时,以最大化分类训练样例还是G生成样本的概率准确性为目的;同时训练G以最小化\(\log(1-D(G(z)))\)为目的,两者互为博弈的双方,定义它们的最大最小博弈的价值函数\(V(G,D)\):

\[\min_G\max_DV(D,G)=\mathbb{E}_{x\sim p_{data}}[\log D(x)]+\mathbb{E}_{z\sim p_{z}}[\log(1-D(G(z)))] \]

可以得到生成器损失函数:\(\mathcal{L}_G =\frac1m\sum_{i=1}m\log\left(1-D\left(G\left(z{(i)}\right)\right)\right)\)

判别器损失函数:\(\mathcal{L}_D=\frac1m\sum_{i=1}^m\left[\log D\left(\boldsymbol{x}{(i)}\right)+\log\left(1-D\left(G\left(\boldsymbol{z}{(i)}\right)\right)\right)\right]\)

极端情况下如果D很完美,\(D(x)=1,D(G(z))=0\),最后两项结果都为0,但如果存在误分类,由于log两项结果会变为负数。随着G的输出越来越像x导致D误判,价值函数V也会随之变小。

计算它们的期望(\(\mathbb{E}_{x\sim p}f(x)=\int_xp(x)f(x){\rm d}x\)):

\[V(G,D)=\int_xp_{data}(x)\log D(x)\,{\rm d}x+\int_zp_z(z)\log(1-D(G(z)))\,{\rm d}z \\ =\int_xp_{data}(x)\log D(x)+p_g(x)\log(1-D(x))\,{\rm d}x \]

当D取到最优解时,上面的最大最小博弈价值函数\(V(G,D)\)可以写为:

\[C(G)=\max_DV(G,D)= \\ \mathbb{E}_{x\sim p_{data}}[\log\frac{p_{data}(x)}{p_{data}(x)+p_g(x)}]+\mathbb{E}_{x\sim p_g}[\log\frac{p_g(x)}{p_{data}(x)+p_g(x)}] \]

当\(p_g=p_{data}\),取到\(-\log4\),上式可以写成KL散度的形式:

\[C(G)=-\log4+{\rm KL}(p_{data}||\frac{p_{data}+p_g}{2})+{\rm KL}(p_g||\frac{p_{data}+p_g}{2}) \]

当\(p_g=p_{data}\)时,G取最小值也就是最优解。对于对称的KL散度,可以写成JS散度的形式:

\[C(G)=2\cdot{\rm JS}(p_{data}||p_g)-\log4 \]

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

这篇关于生成模型的两大代表:VAE和GAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083024

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2