算法设计与分析:并查集法求图论桥问题

2024-06-21 17:28

本文主要是介绍算法设计与分析:并查集法求图论桥问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、实验目的

二、问题描述

三、实验要求

四、算法思想

1.  基准算法

1.1 算法思想

1.2 代码

1.3 时间复杂度

2. 使用并查集的高效算法

2.1 算法思想

2.2 代码:

2.3 时间复杂度:

五、实验结果


实验目的

1. 掌握图的连通性。

2. 掌握并查集的基本原理和应用。

问题描述

在图论中,一条边被称为“桥”代表这条边一旦被删除,这个图的连通块数量会增加。等价地说,一条边是一座桥当且仅当这条边不在任何环上,一个图可以有零或多座桥。现要找出一个无向图中所有的桥,基准算法为:对于图中每条边uv,删除该边后,运用BFS或DFS确定u和v是否仍然连通,若不连通,则uv是桥。应用并查集设计一个比基准算法更高效的算法,不要使用Tarjan算法。                                             

            图1 没有桥的无向连通图                   图2 有16个顶点和6个桥的图(桥以红色线段标示)

实验要求

1. 实现上述基准算法。

2. 设计的高效算法中必须使用并查集,如有需要,可以配合使用其他任何数据结构。

3. 用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

4. 使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

5. 实验课检查内容:对于smallG.txt、mediumG.txt、largeG.txt中的无向图,测试高效算法的输出结果和运行时间,检查该代码,限用C或C++语言编写。其中smallG.txt和mediumG.txt为必做内容,运行时间在4分钟内有效,直接在终端输出结果和运行时间。以smallG.txt为例,输出如下:

6

0 1

2 3

2 6

6 7

9 10

12 13

0.002

其中,第一行的6表示桥数,接下来的6行分别是6座桥的两个端点,小端点在前,大端点在后,6座桥按照端点从小到大的顺序输出,最后一行的0.002为整个main函数的运行时间,单位为秒。

、算法思想

1.  基准算法

1.1 算法思想

        1)先dfs遍历图,得到连通分量个数N;

        2)遍历边集,对于每条边ei,先删除ei;

        3)再次dfs得到此时的连通分量个数num,

        4)如果num!=N,则ei为桥;否则不为桥。

        5)恢复ei,取下一条边ei+1,回到2)继续,直到遍历完全部边。

1.2 代码
int **k,*v,n,m,**br,brnum,N;
//邻接矩阵、访问位、点数、边数、是否为桥、桥数、
int *p,*d,*qiao;//并查集、点的深度、标记dfs2后是否为桥
string filename;//文件名void read1(){//初始化int i,a,b;ifstream file(filename.c_str());file>>n>>m;k=new int*[n];v=new int[n];br=new int*[n];brnum=0;for(i=0;i<n;i++){k[i]=new int[n];br[i]=new int[2];v[i]=0;br[i][0]=br[i][1]=0;for(int j=0;j<n;j++)k[i][j]=0;}for(i=0;i<m;i++){file>>a>>b;k[a][b]=1;k[b][a]=1;}file.close();
}void dfs1(int a){//dfs深度遍历int i;v[a]=1;for(i=0;i<n;i++)if(k[a][i]&&!v[i])dfs1(i);
}int count1(){//计算连通分量个数int i,num=0;for(i=0;i<n;i++)if(!v[i]){dfs1(i);num++;}return num;
}void base(){//基准法int i,j,a,b,num;ifstream file(filename.c_str());file>>n>>m;N=count1();for(i=0;i<m;i++){file>>a>>b;k[a][b]=0;//先删除该边k[b][a]=0;for(j=0;j<n;j++)v[j]=0;num=count1();if(num!=N){//判断是否为桥br[brnum][0]=a;//记录桥br[brnum][1]=b;brnum++;//桥个数增加}k[a][b]=1;//恢复该边k[b][a]=1;}file.close();
}void print1(){//因为实验对输出格式有要求int i,j,a,b;cout<<brnum<<endl;for(i=0;i<brnum-1;i++){//选择排序a=i;for(j=i+1;j<brnum;j++){if(br[j][0]<br[a][0]||(br[j][0]==br[a][0]&&br[j][1]<br[a][1]))//父端较小 或 父端相同、子端较小a=j;}b=br[a][0];br[a][0]=br[i][0];br[i][0]=b;b=br[a][1];br[a][1]=br[i][1];br[i][1]=b;}for(int i=0;i<brnum;i++){cout<<br[i][0]<<" "<<br[i][1]<<endl;}
}
1.3 时间复杂度

        n个点,m条边。需要遍历m条边,O(m),每次都需要count1一次,而count1由于是使用邻接矩阵储存边关系,最坏情况为O(n^2)。所以总的时间复杂度为O(m*n^2)。

        如果用邻接表,则count1的时间复杂度为O(n+m),总时间复杂度变为O(m(n+m))。

2. 使用并查集的高效算法

2.1 算法思想

        桥的等价意义:不在环上的边

        树是边数最小的无环图,当向树上添加任意一条顶点都在树上的边时,会形成环。桥不在环上,所以桥只能在图的生成树上。

        所以还是先构建生成树,然后不断dfs,不过dfs过程中顺便记录每个点的深度d[i]。

        再遍历所有边,每次遍历时:

                如果为生成树上的边则直接return。

                否则:求当前边两端点的最近公共祖先(LCA),过程中将路过的边(在环上)置为非桥边(q[i]==0);并根据LCA进行路径压缩compress(将环上除了LCA本身的点的父节点均设置为LCA)。

        这里以点带边,即q[i]==1表示以第i个点为尾的生成树上的边为桥,该边用(p[i],i)表示(p[i]为i在生成树上的父节点)。

2.2 代码:
void read2(){//读入文件信息并初始化…………
}void dfs2(int a,int b,int depth){//b is the ancestor of a…………
}void count2(){//生成生成树、并查集、深度集合等…………
}void compress(int x,int a){//路径压缩if(p[x]==a)//等于最近公共祖先return;else{int t=x;x=p[x];p[t]=a;compress(x,a);}
}void LCA(int a,int b){//对每条边的两点找最近公共祖先if(p[a]==b||p[b]==a)//在生成树上的边,直接返回return;else{int u=a,v=b,//保留原边的两端x=0,y=0;//判断a、b是否在while中执行了a=p[a]、b=p[b]操作,有执行才压缩,//避免其中一点是最近公共祖先时压缩导致该点父节点被自己覆盖while(1){if(d[a]>d[b]){//深度大的向上遍历qiao[a]=0;a=p[a];x=1;}else if(d[a]<d[b]){//深度大的向上遍历qiao[b]=0;b=p[b];y=1;}else if(a!=b){//深度相同但不同点,一起向上遍历qiao[a]=0;qiao[b]=0;a=p[a];b=p[b];x=y=1;}else break;//同个点,a=b=最近公共祖先}//此时a==bif(x)//路径压缩compress(u,a);if(y)compress(v,b);}
}
void better(){//并查集的高效算法int i,a,b;ifstream file(filename.c_str());//读入文件count2();//生成生成树、并查集、深度集合等file>>n>>m;for(i=0;i<m;i++){//遍历每一条边file>>a>>b;LCA(a,b);//求最近公共祖先}file.close();
}
void print2(){//打印输出……
}

     虽然压缩后不能再直接使用”if(p[a]==b||p[b]==a)“判断边(a,b)是否为原生成树上的边,但不影响结果。因为压缩的边都是非桥边,只不过会执行下面的while。但总体上压缩后效率还是提高了的。

2.3 时间复杂度:

        n个点,m条边。dfs构建生成树最坏情况下时间复杂度为O(n^2)。遍历m条边,每次查找最近公共祖先最差情况下要查找n次,时间复杂度为O(n),一次路径压缩最差情况时间复杂度也为O(n)。所以总时间复杂度为O(n*(m+n))。

实验结果

1、用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

                                                  

        验证正确。

2、使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

        mediumG.txt:

       对于largeG.txt文件,由于使用的是邻接矩阵,n太大,运行时内存不够分配,运行中断。

这篇关于算法设计与分析:并查集法求图论桥问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081862

相关文章

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地