算法设计与分析:并查集法求图论桥问题

2024-06-21 17:28

本文主要是介绍算法设计与分析:并查集法求图论桥问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、实验目的

二、问题描述

三、实验要求

四、算法思想

1.  基准算法

1.1 算法思想

1.2 代码

1.3 时间复杂度

2. 使用并查集的高效算法

2.1 算法思想

2.2 代码:

2.3 时间复杂度:

五、实验结果


实验目的

1. 掌握图的连通性。

2. 掌握并查集的基本原理和应用。

问题描述

在图论中,一条边被称为“桥”代表这条边一旦被删除,这个图的连通块数量会增加。等价地说,一条边是一座桥当且仅当这条边不在任何环上,一个图可以有零或多座桥。现要找出一个无向图中所有的桥,基准算法为:对于图中每条边uv,删除该边后,运用BFS或DFS确定u和v是否仍然连通,若不连通,则uv是桥。应用并查集设计一个比基准算法更高效的算法,不要使用Tarjan算法。                                             

            图1 没有桥的无向连通图                   图2 有16个顶点和6个桥的图(桥以红色线段标示)

实验要求

1. 实现上述基准算法。

2. 设计的高效算法中必须使用并查集,如有需要,可以配合使用其他任何数据结构。

3. 用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

4. 使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

5. 实验课检查内容:对于smallG.txt、mediumG.txt、largeG.txt中的无向图,测试高效算法的输出结果和运行时间,检查该代码,限用C或C++语言编写。其中smallG.txt和mediumG.txt为必做内容,运行时间在4分钟内有效,直接在终端输出结果和运行时间。以smallG.txt为例,输出如下:

6

0 1

2 3

2 6

6 7

9 10

12 13

0.002

其中,第一行的6表示桥数,接下来的6行分别是6座桥的两个端点,小端点在前,大端点在后,6座桥按照端点从小到大的顺序输出,最后一行的0.002为整个main函数的运行时间,单位为秒。

、算法思想

1.  基准算法

1.1 算法思想

        1)先dfs遍历图,得到连通分量个数N;

        2)遍历边集,对于每条边ei,先删除ei;

        3)再次dfs得到此时的连通分量个数num,

        4)如果num!=N,则ei为桥;否则不为桥。

        5)恢复ei,取下一条边ei+1,回到2)继续,直到遍历完全部边。

1.2 代码
int **k,*v,n,m,**br,brnum,N;
//邻接矩阵、访问位、点数、边数、是否为桥、桥数、
int *p,*d,*qiao;//并查集、点的深度、标记dfs2后是否为桥
string filename;//文件名void read1(){//初始化int i,a,b;ifstream file(filename.c_str());file>>n>>m;k=new int*[n];v=new int[n];br=new int*[n];brnum=0;for(i=0;i<n;i++){k[i]=new int[n];br[i]=new int[2];v[i]=0;br[i][0]=br[i][1]=0;for(int j=0;j<n;j++)k[i][j]=0;}for(i=0;i<m;i++){file>>a>>b;k[a][b]=1;k[b][a]=1;}file.close();
}void dfs1(int a){//dfs深度遍历int i;v[a]=1;for(i=0;i<n;i++)if(k[a][i]&&!v[i])dfs1(i);
}int count1(){//计算连通分量个数int i,num=0;for(i=0;i<n;i++)if(!v[i]){dfs1(i);num++;}return num;
}void base(){//基准法int i,j,a,b,num;ifstream file(filename.c_str());file>>n>>m;N=count1();for(i=0;i<m;i++){file>>a>>b;k[a][b]=0;//先删除该边k[b][a]=0;for(j=0;j<n;j++)v[j]=0;num=count1();if(num!=N){//判断是否为桥br[brnum][0]=a;//记录桥br[brnum][1]=b;brnum++;//桥个数增加}k[a][b]=1;//恢复该边k[b][a]=1;}file.close();
}void print1(){//因为实验对输出格式有要求int i,j,a,b;cout<<brnum<<endl;for(i=0;i<brnum-1;i++){//选择排序a=i;for(j=i+1;j<brnum;j++){if(br[j][0]<br[a][0]||(br[j][0]==br[a][0]&&br[j][1]<br[a][1]))//父端较小 或 父端相同、子端较小a=j;}b=br[a][0];br[a][0]=br[i][0];br[i][0]=b;b=br[a][1];br[a][1]=br[i][1];br[i][1]=b;}for(int i=0;i<brnum;i++){cout<<br[i][0]<<" "<<br[i][1]<<endl;}
}
1.3 时间复杂度

        n个点,m条边。需要遍历m条边,O(m),每次都需要count1一次,而count1由于是使用邻接矩阵储存边关系,最坏情况为O(n^2)。所以总的时间复杂度为O(m*n^2)。

        如果用邻接表,则count1的时间复杂度为O(n+m),总时间复杂度变为O(m(n+m))。

2. 使用并查集的高效算法

2.1 算法思想

        桥的等价意义:不在环上的边

        树是边数最小的无环图,当向树上添加任意一条顶点都在树上的边时,会形成环。桥不在环上,所以桥只能在图的生成树上。

        所以还是先构建生成树,然后不断dfs,不过dfs过程中顺便记录每个点的深度d[i]。

        再遍历所有边,每次遍历时:

                如果为生成树上的边则直接return。

                否则:求当前边两端点的最近公共祖先(LCA),过程中将路过的边(在环上)置为非桥边(q[i]==0);并根据LCA进行路径压缩compress(将环上除了LCA本身的点的父节点均设置为LCA)。

        这里以点带边,即q[i]==1表示以第i个点为尾的生成树上的边为桥,该边用(p[i],i)表示(p[i]为i在生成树上的父节点)。

2.2 代码:
void read2(){//读入文件信息并初始化…………
}void dfs2(int a,int b,int depth){//b is the ancestor of a…………
}void count2(){//生成生成树、并查集、深度集合等…………
}void compress(int x,int a){//路径压缩if(p[x]==a)//等于最近公共祖先return;else{int t=x;x=p[x];p[t]=a;compress(x,a);}
}void LCA(int a,int b){//对每条边的两点找最近公共祖先if(p[a]==b||p[b]==a)//在生成树上的边,直接返回return;else{int u=a,v=b,//保留原边的两端x=0,y=0;//判断a、b是否在while中执行了a=p[a]、b=p[b]操作,有执行才压缩,//避免其中一点是最近公共祖先时压缩导致该点父节点被自己覆盖while(1){if(d[a]>d[b]){//深度大的向上遍历qiao[a]=0;a=p[a];x=1;}else if(d[a]<d[b]){//深度大的向上遍历qiao[b]=0;b=p[b];y=1;}else if(a!=b){//深度相同但不同点,一起向上遍历qiao[a]=0;qiao[b]=0;a=p[a];b=p[b];x=y=1;}else break;//同个点,a=b=最近公共祖先}//此时a==bif(x)//路径压缩compress(u,a);if(y)compress(v,b);}
}
void better(){//并查集的高效算法int i,a,b;ifstream file(filename.c_str());//读入文件count2();//生成生成树、并查集、深度集合等file>>n>>m;for(i=0;i<m;i++){//遍历每一条边file>>a>>b;LCA(a,b);//求最近公共祖先}file.close();
}
void print2(){//打印输出……
}

     虽然压缩后不能再直接使用”if(p[a]==b||p[b]==a)“判断边(a,b)是否为原生成树上的边,但不影响结果。因为压缩的边都是非桥边,只不过会执行下面的while。但总体上压缩后效率还是提高了的。

2.3 时间复杂度:

        n个点,m条边。dfs构建生成树最坏情况下时间复杂度为O(n^2)。遍历m条边,每次查找最近公共祖先最差情况下要查找n次,时间复杂度为O(n),一次路径压缩最差情况时间复杂度也为O(n)。所以总时间复杂度为O(n*(m+n))。

实验结果

1、用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

                                                  

        验证正确。

2、使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

        mediumG.txt:

       对于largeG.txt文件,由于使用的是邻接矩阵,n太大,运行时内存不够分配,运行中断。

这篇关于算法设计与分析:并查集法求图论桥问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081862

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束