快排(前后指针实现)

2024-06-21 14:52
文章标签 实现 指针 快排

本文主要是介绍快排(前后指针实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

02f9ea45b5174b05b8ad7dad4f45fe9d.png

前言

快排解决办法有很多种,这里我再拿出来一种前后指针版本

虽然这个版本的时间复杂度和霍尔一样,逻辑也差不多,但是实际排序过程,确实会比霍尔慢一点

快排gif

b3d521cc988c4a3193d21d0c0e3e8b5a.gif

快排前后指针实现逻辑:

前后指针实现逻辑(升序):
单趟排序:
1,我们使用递归来进行实现,所以我们先实现单趟排序
2,定义两个下标,也就是所谓的指针,初始的时候,一个指向最左边第一个元素(prev),一个指向第二个元素(cur),最后定义一个对比keyi3,此时先判断我们的cur是不是小于keyi。cur小于keyi的话:prev++,交换,之后cur++4,但是我们如果和自己交换此时没有什么意义,所以这里我们需要做一个处理
5,继续往前走,如果遇见的是:比keyi下标大的元素此时,cur++,直到遇见的是比keyi下标小的元素,循环执行.prev++,交换,之后cur++

6,最后cur走到最后一个元素,我们交换keyi的下标元素和prev的下标元素

多趟实现:
1,递归进行分割:【left,keyi-1】keyi【keyi+1,right】
2,停止条件就是当left>=right
原因:【left, keyi-1】keyi【keyi+1, right】

07b544bcff274870887ae4d9edb5c0a3.png

快排单趟实现

这里只是图解单趟实现逻辑,因为多趟实现的逻辑和霍尔的一样,也是递归,所以不进行多次书写

c09ef1f8aec043a7bdcfa20e170442b0.png

代码实现

这里的代码实现的核心逻辑不一样,大的框架是一样的,也就是三数取中,以及减少递归从而使用插入排序这样的逻辑是一样的,下面我们来看看这个新的组装怪

//快排(前后指针方法)(递归实现)
void QuickSort02(int* a, int left, int right)
{//递归停止条件if (left >= right)return;//创建两个变量,作为前后指针使用int prev = left; int cur = prev + 1;int keyi = left;//当快指针到尾的时候,跳出循环->交换while (cur <= right){//前后指针中间是比a[keyi]大的数值,所以遇见大的++,小的停止if (a[keyi] > a[cur]){//停止之后,慢指针++,并且进行交换,因为中间才是大的数值,cur遇见大数值++。遇见小数值才停下来prev++;Swap(&a[prev], &a[cur]);//同理快指针也进行++,往后移动cur++;}else{cur++;}}Swap(&a[prev], &a[keyi]);keyi = prev;//多趟递归实现//[left,keyi-1] keyi [keyi+1,right]   这里传递的是区间//  1     0      1     2      1       当只剩一个数值的时候,也就是这个区间的时候,递归停止 QuickSort02(a, left, keyi - 1);QuickSort02(a, keyi + 1, right);
}

总结:

  1. 算法基础:快速排序是一种分而治之的排序算法,它通过递归地将数组分为较小的子数组,然后对这些子数组进行排序。

  2. 分区策略:使用前后指针(prevcur)进行分区,而不是传统的左右指针。这种方法在某些情况下可以减少元素交换的次数。

  3. 基准值选择:基准值(keyi)是数组的第一个元素,即left索引对应的元素。

  4. 指针移动规则

    • prev作为慢指针,用于跟踪比基准值小的元素的边界。
    • cur作为快指针,从left + 1开始遍历数组。
  5. 元素交换:当快指针指向的元素大于基准值时,不进行交换,快指针继续移动;当快指针指向的元素小于或等于基准值时,与慢指针所指元素交换,然后慢指针和快指针都向前移动。

  6. 递归排序:在基准值确定之后,递归地对基准值左边和右边的子数组进行排序。

  7. 时间复杂度:平均情况下,快速排序的时间复杂度为O(n log n)。最坏情况下,如果每次分区都极不平衡,时间复杂度会退化到O(n^2)。

  8. 空间复杂度:由于递归性质,快速排序的空间复杂度为O(log n)。

  9. 算法优化:通过前后指针方法,可以在某些情况下提高快速排序的性能,特别是当基准值接近数组中间值时。

  10. 适用场景:快速排序适用于大多数需要排序的场景,特别是在大数据集上,它通常能够提供非常高效的排序性能。

优化

53718a8efe964eeb9fd6b68d66153777.png

这里我们可以看到,cur无论是if还是else里面都需要++,所以我们直接放到外面

其次我们为了效率,不和自己交换,我们不和自己交换,进行一个判断条件

快慢指针代码优化(完整)

//交换函数
void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//快排(前后指针方法)(递归实现)
void QuickSort02(int* a, int left, int right)
{//递归停止条件if (left >= right)return;if (right - left + 1 >= 10){InsertionSort(a + left, right - left + 1);}else{//三数取中int mid = GetMid(a, left, right);Swap(&a[mid], &a[left]);//单趟实现//创建两个变量,作为前后指针使用int prev = left; int cur = prev + 1;int keyi = left;//当快指针到尾的时候,跳出循环->交换while (cur <= right){//前后指针中间是比a[keyi]大的数值,所以遇见大的++,小的停止if (a[keyi] > a[cur] && prev++ != cur){//停止之后,慢指针++,并且进行交换,因为中间才是大的数值,cur遇见大数值++。遇见小数值才停下来Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;//多趟递归实现//[left,keyi-1] keyi [keyi+1,right]   这里传递的是区间//  1     0      1     2      1       当只剩一个数值的时候,也就是这个区间的时候,递归停止 QuickSort02(a, left, keyi - 1);QuickSort02(a, keyi + 1, right);}
}

总结:

  1. 基本递归结构:算法使用递归调用来处理子数组,这是快速排序算法的核心结构。

  2. 小数组优化:当子数组的大小小于或等于10时,算法使用插入排序而不是快速排序,因为插入排序在小规模数据上更高效。

  3. 三数取中法:为了更均匀地分割数组,算法使用三数取中法选择基准值,这有助于减少最坏情况发生的概率。

  4. 前后指针方法:算法使用两个指针(prevcur),其中prev作为慢指针,cur作为快指针,通过这种方式进行一次遍历完成分区。

  5. 分区操作:快指针从left + 1开始遍历,如果当前元素小于基准值,则与慢指针所指的元素交换,然后慢指针向前移动。

  6. 递归排序子数组:基准值确定后,算法递归地对基准值左边和右边的子数组进行排序。

  7. 时间复杂度:平均情况下,算法的时间复杂度为O(n log n),最坏情况下为O(n^2)。但由于采用了小数组优化和三数取中法,最坏情况的发生概率降低。

  8. 空间复杂度:算法的空间复杂度为O(log n),这主要由于递归调用导致的栈空间使用。

  9. 适用场景:这种改进的快速排序算法适用于大多数需要排序的场景,尤其是在大数据集上,它能够提供非常高效的排序性能,同时在小数据集上也表现出较好的效率。

  10. 算法稳定性:由于使用了插入排序对小规模子数组进行排序,算法在处理小规模数据时具有稳定性。

  11. 注意:在实际测试·里面,前后指针比霍尔排序慢一点

通过这种混合排序策略,算法在保持快速排序优点的同时,也提高了在特定情况下的排序效率,使其成为一种更加健壮的排序方法。

注意事项

这里调用的插入排序是升序,写的快排也是升序,如果你需要测试降序,那么你需要把插入排序一起改成降序,不然会导致排序冲突

 

这篇关于快排(前后指针实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081528

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1