快排(前后指针实现)

2024-06-21 14:52
文章标签 实现 指针 快排

本文主要是介绍快排(前后指针实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

02f9ea45b5174b05b8ad7dad4f45fe9d.png

前言

快排解决办法有很多种,这里我再拿出来一种前后指针版本

虽然这个版本的时间复杂度和霍尔一样,逻辑也差不多,但是实际排序过程,确实会比霍尔慢一点

快排gif

b3d521cc988c4a3193d21d0c0e3e8b5a.gif

快排前后指针实现逻辑:

前后指针实现逻辑(升序):
单趟排序:
1,我们使用递归来进行实现,所以我们先实现单趟排序
2,定义两个下标,也就是所谓的指针,初始的时候,一个指向最左边第一个元素(prev),一个指向第二个元素(cur),最后定义一个对比keyi3,此时先判断我们的cur是不是小于keyi。cur小于keyi的话:prev++,交换,之后cur++4,但是我们如果和自己交换此时没有什么意义,所以这里我们需要做一个处理
5,继续往前走,如果遇见的是:比keyi下标大的元素此时,cur++,直到遇见的是比keyi下标小的元素,循环执行.prev++,交换,之后cur++

6,最后cur走到最后一个元素,我们交换keyi的下标元素和prev的下标元素

多趟实现:
1,递归进行分割:【left,keyi-1】keyi【keyi+1,right】
2,停止条件就是当left>=right
原因:【left, keyi-1】keyi【keyi+1, right】

07b544bcff274870887ae4d9edb5c0a3.png

快排单趟实现

这里只是图解单趟实现逻辑,因为多趟实现的逻辑和霍尔的一样,也是递归,所以不进行多次书写

c09ef1f8aec043a7bdcfa20e170442b0.png

代码实现

这里的代码实现的核心逻辑不一样,大的框架是一样的,也就是三数取中,以及减少递归从而使用插入排序这样的逻辑是一样的,下面我们来看看这个新的组装怪

//快排(前后指针方法)(递归实现)
void QuickSort02(int* a, int left, int right)
{//递归停止条件if (left >= right)return;//创建两个变量,作为前后指针使用int prev = left; int cur = prev + 1;int keyi = left;//当快指针到尾的时候,跳出循环->交换while (cur <= right){//前后指针中间是比a[keyi]大的数值,所以遇见大的++,小的停止if (a[keyi] > a[cur]){//停止之后,慢指针++,并且进行交换,因为中间才是大的数值,cur遇见大数值++。遇见小数值才停下来prev++;Swap(&a[prev], &a[cur]);//同理快指针也进行++,往后移动cur++;}else{cur++;}}Swap(&a[prev], &a[keyi]);keyi = prev;//多趟递归实现//[left,keyi-1] keyi [keyi+1,right]   这里传递的是区间//  1     0      1     2      1       当只剩一个数值的时候,也就是这个区间的时候,递归停止 QuickSort02(a, left, keyi - 1);QuickSort02(a, keyi + 1, right);
}

总结:

  1. 算法基础:快速排序是一种分而治之的排序算法,它通过递归地将数组分为较小的子数组,然后对这些子数组进行排序。

  2. 分区策略:使用前后指针(prevcur)进行分区,而不是传统的左右指针。这种方法在某些情况下可以减少元素交换的次数。

  3. 基准值选择:基准值(keyi)是数组的第一个元素,即left索引对应的元素。

  4. 指针移动规则

    • prev作为慢指针,用于跟踪比基准值小的元素的边界。
    • cur作为快指针,从left + 1开始遍历数组。
  5. 元素交换:当快指针指向的元素大于基准值时,不进行交换,快指针继续移动;当快指针指向的元素小于或等于基准值时,与慢指针所指元素交换,然后慢指针和快指针都向前移动。

  6. 递归排序:在基准值确定之后,递归地对基准值左边和右边的子数组进行排序。

  7. 时间复杂度:平均情况下,快速排序的时间复杂度为O(n log n)。最坏情况下,如果每次分区都极不平衡,时间复杂度会退化到O(n^2)。

  8. 空间复杂度:由于递归性质,快速排序的空间复杂度为O(log n)。

  9. 算法优化:通过前后指针方法,可以在某些情况下提高快速排序的性能,特别是当基准值接近数组中间值时。

  10. 适用场景:快速排序适用于大多数需要排序的场景,特别是在大数据集上,它通常能够提供非常高效的排序性能。

优化

53718a8efe964eeb9fd6b68d66153777.png

这里我们可以看到,cur无论是if还是else里面都需要++,所以我们直接放到外面

其次我们为了效率,不和自己交换,我们不和自己交换,进行一个判断条件

快慢指针代码优化(完整)

//交换函数
void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//快排(前后指针方法)(递归实现)
void QuickSort02(int* a, int left, int right)
{//递归停止条件if (left >= right)return;if (right - left + 1 >= 10){InsertionSort(a + left, right - left + 1);}else{//三数取中int mid = GetMid(a, left, right);Swap(&a[mid], &a[left]);//单趟实现//创建两个变量,作为前后指针使用int prev = left; int cur = prev + 1;int keyi = left;//当快指针到尾的时候,跳出循环->交换while (cur <= right){//前后指针中间是比a[keyi]大的数值,所以遇见大的++,小的停止if (a[keyi] > a[cur] && prev++ != cur){//停止之后,慢指针++,并且进行交换,因为中间才是大的数值,cur遇见大数值++。遇见小数值才停下来Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;//多趟递归实现//[left,keyi-1] keyi [keyi+1,right]   这里传递的是区间//  1     0      1     2      1       当只剩一个数值的时候,也就是这个区间的时候,递归停止 QuickSort02(a, left, keyi - 1);QuickSort02(a, keyi + 1, right);}
}

总结:

  1. 基本递归结构:算法使用递归调用来处理子数组,这是快速排序算法的核心结构。

  2. 小数组优化:当子数组的大小小于或等于10时,算法使用插入排序而不是快速排序,因为插入排序在小规模数据上更高效。

  3. 三数取中法:为了更均匀地分割数组,算法使用三数取中法选择基准值,这有助于减少最坏情况发生的概率。

  4. 前后指针方法:算法使用两个指针(prevcur),其中prev作为慢指针,cur作为快指针,通过这种方式进行一次遍历完成分区。

  5. 分区操作:快指针从left + 1开始遍历,如果当前元素小于基准值,则与慢指针所指的元素交换,然后慢指针向前移动。

  6. 递归排序子数组:基准值确定后,算法递归地对基准值左边和右边的子数组进行排序。

  7. 时间复杂度:平均情况下,算法的时间复杂度为O(n log n),最坏情况下为O(n^2)。但由于采用了小数组优化和三数取中法,最坏情况的发生概率降低。

  8. 空间复杂度:算法的空间复杂度为O(log n),这主要由于递归调用导致的栈空间使用。

  9. 适用场景:这种改进的快速排序算法适用于大多数需要排序的场景,尤其是在大数据集上,它能够提供非常高效的排序性能,同时在小数据集上也表现出较好的效率。

  10. 算法稳定性:由于使用了插入排序对小规模子数组进行排序,算法在处理小规模数据时具有稳定性。

  11. 注意:在实际测试·里面,前后指针比霍尔排序慢一点

通过这种混合排序策略,算法在保持快速排序优点的同时,也提高了在特定情况下的排序效率,使其成为一种更加健壮的排序方法。

注意事项

这里调用的插入排序是升序,写的快排也是升序,如果你需要测试降序,那么你需要把插入排序一起改成降序,不然会导致排序冲突

 

这篇关于快排(前后指针实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081528

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到