【Gradio】使用 Gradio 进行表格数据科学工作流

2024-06-21 13:44

本文主要是介绍【Gradio】使用 Gradio 进行表格数据科学工作流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

表格数据科学是机器学习中最广泛使用的领域,涉及的问题从客户细分到流失预测不等。在表格数据科学工作流的各个阶段,与利益相关者或客户沟通您的工作可能会很麻烦;这阻止了数据科学家专注于重要的事情,如数据分析和模型构建。数据科学家可能会花费数小时构建一个仪表板,该仪表板接收dataframe 并返回plots图表,或返回数据集中的群集的预测或图表。在本指南中,我们将介绍如何使用 gradio 来改进您的数据科学工作流程。我们还将讨论如何使用 gradio 和 skops 仅用一行代码构建接口!

 先决条件 

确保您已经安装了 gradio Python 包。

让我们创建一个简单的界面! 

我们将看看如何创建一个简单的 UI,根据产品信息预测故障。

# 导入gradio、pandas、joblib和datasets库
import gradio as gr
import pandas as pd
import joblib
import datasets# 创建Gradio的输入与输出界面,输入是一个数据表格,输出是预测结果的数据表格
inputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(4, "dynamic"), label="输入数据", interactive=1)]
outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="预测结果", headers=["故障数"])]# 从“model.pkl”加载预训练的模型
model = joblib.load("model.pkl")# 从datasets库中加载样例数据集“merve/supersoaker-failures”
df = datasets.load_dataset("merve/supersoaker-failures")
df = df["train"].to_pandas()# 定义预测函数,将从Gradio接口接收到的输入数据用预训练的模型进行预测
def infer(input_dataframe):return pd.DataFrame(model.predict(input_dataframe))# 创建Gradio界面,设置函数、输入与输出方式,并给出样例数据
gr.Interface(fn=infer, inputs=inputs, outputs=outputs, examples=[[df.head(2)]]).launch()

让我们分解上面的代码。

  • fn :一个推理函数,它接受输入数据框并返回预测。

  • inputs :我们用来取输入的组件。我们将输入定义为一个有 2 行 4 列的数据框,最初它看起来像一个空的数据框,有上述的形状。当 row_count 设置为 dynamic 时,你不必依赖于你输入到预定义组件的数据集。

  • outputs :存储输出的数据框组件。这个 UI 可以取单个或多个样本进行推断,并且在一列中为每个样本返回 0 或 1,所以我们在上面给 row_count 为 2 和 col_count 为 1。 headers 是一个由数据框的表头名称组成的列表。

  • examples :你可以通过拖放 CSV 文件,或者通过示例传递一个 pandas 数据框,其表头将被界面自动获取。

我们现在将创建一个最简数据可视化仪表板的例子。您可以在相关空间中找到一个更全面的版本。

419e4f3497dca53ef267003beb084c02.png

# 导入gradio、pandas、datasets、seaborn和matplotlib.pyplot库
import gradio as gr
import pandas as pd
import datasets
import seaborn as sns
import matplotlib.pyplot as plt# 从datasets库中加载样例数据集“merve/supersoaker-failures”,并把空值所在行删除
df = datasets.load_dataset("merve/supersoaker-failures")
# 将"datasets"库加载的数据集转换为pandas的DataFrame格式
df = df["train"].to_pandas()
df.dropna(axis=0, inplace=True)# 定义函数来创建散点图、条形图和热力图
def plot(df):# 创建散点图plt.scatter(df.measurement_13, df.measurement_15, c = df.loading,alpha=0.5)plt.savefig("scatter.png")# 创建条形图df['failure'].value_counts().plot(kind='bar')plt.savefig("bar.png")# 创建热力图sns.heatmap(df.select_dtypes(include="number").corr())plt.savefig("corr.png")# 指定结果图像的文件路径plots = ["corr.png","scatter.png", "bar.png"]return plots# 创建Gradio的输入和输出格式,输入为数据框,输出为图像画廊
inputs = [gr.Dataframe(label="Supersoaker生产数据")]
outputs = [gr.Gallery(label="分析仪表板", columns=(1,3))]# 使用Gradio创建界面,并启动
gr.Interface(plot, inputs=inputs, outputs=outputs, examples=[df.head(100)], title="Supersoaker故障分析仪表板").launch()

ea27c31b1537904610202b9e0958ff01.png

38318d999be6693328dad1a4d2ea8311.png

这段代码的作用是创建了一个交互式的分析仪表板,它可以直观地展示数据集“merve/supersoaker-failures”的散点图、条形图和热力图,使用户能更直观地了解数据情况,并帮助用户进行数据分析。

我们将使用训练模型时用的同一数据集,但这次我们将制作一个仪表板来可视化它。

  • fn :将根据数据创建图表的函数。

  • inputs :我们使用了上面相同的 Dataframe 组件。

  • outputs : Gallery 组件用于保持我们的可视化。

  • examples :我们将以数据集本身为例。

使用 skops  一行代码即可轻松加载表格数据接口

skops 是建立在 huggingface_hub 和 sklearn 之上的库。随着最近 gradio 对 skops 的集成,您可以用一行代码构建表格数据接口!

# 导入Gradio库,用于构建Web GUI
import gradio as gr# title和description是可选的,用于定义Web界面的标题和描述信息
title = "Supersoaker故障产品预测"
description = "该模型预测Supersoaker生产线上的故障。你可以拖拽数据集的任何部分,或者在下方的数据框组件中按需编辑值。"# 使用Gradio的load方法加载一个名为“huggingface/scikit-learn/tabular-playground”的模型
# 并设置了标题和描述。这个模型是从Hugging Face Hub上获取的,用于表格数据的预测
gr.load("huggingface/scikit-learn/tabular-playground", title=title, description=description).launch()

使用 skops 推送到 Hugging Face Hub 的 sklearn 模型包括一个 config.json 文件,其中包含带有列名的示例输入,以及正在解决的任务(可以是 tabular-classification 或 tabular-regression )。根据任务类型, gradio 构建 Interface 并使用列名和示例输入来构建它。您可以参考 skops 关于在 Hub 上托管模型的文档,了解如何使用 skops 将模型推送到 Hub。https://skops.readthedocs.io/en/v0.9.0/auto_examples/index.html

这篇关于【Gradio】使用 Gradio 进行表格数据科学工作流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081380

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多