Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路

本文主要是介绍Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯计算地球大气层中热层金属坠物运动轨迹 | 🎯计算炮弹最佳弹射角度耦合微分方程 | 🎯计算电磁拉莫尔半径螺旋运动 | 🎯计算航天器重力弹弓运动力学微分方程 | 🎯计算双摆的混沌运动非线性微分方程,绘制相空图 | 🎯计算绝热和无粘流流体力学微分方程 | 🎯计算容器流体晃动自由表面简谐运动数学模型 | 🎯计算化学物质的伦纳德-琼斯势物理模型 | 🎯分析直流交流电阻电容电路

📜欧拉法 | 本文 - 用例

📜MATLAB雨刮通风空调模糊器和发电厂电力聚变器卷积神经

📜Python物理量和化学量数值计算

📜Python流感常微分方程房室数学模型

📜C++计算资本市场收益及成本分配数学方程

📜Python计算物理粒子及拉格朗日和哈密顿动力学

📜C代码快速傅里叶变换-分类和推理-常微分和偏微分方程

📜Python物理学有限差分微分求解器和动画波形传播

📜Julia评估劳动力市场经济数学模型价值策略选择

📜Python嵌入式动态用户调制解调响应式射频信号

📜Python机器人动力学和细胞酶常微分方程

📜Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜Python微磁学磁倾斜和西塔规则算法

📜Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算
在这里插入图片描述
在这里插入图片描述

🍇Python欧拉法

d S ( t ) d t = F ( t , S ( t ) ) \frac{d S(t)}{d t}=F(t, S(t)) dtdS(t)=F(t,S(t)) 为显式定义的一阶常微分方程。也就是说, F F F 是一个函数,它返回给定时间和状态值的状态的导数或变化。另外,令 t t t 为区间 [ t 0 , t f ] \left[t_0, t_f\right] [t0,tf] 的数字网格,间距为 h h h。不失一般性,我们假设 t 0 = 0 t_0=0 t0=0,并且对于某个正整数 N N N t f = N h t_f=N h tf=Nh

S ( t ) S(t) S(t) t j t_j tj 附近的线性近似为
S ( t j + 1 ) = S ( t j ) + ( t j + 1 − t j ) d S ( t j ) d t S\left(t_{j+1}\right)=S\left(t_j\right)+\left(t_{j+1}-t_j\right) \frac{d S\left(t_j\right)}{d t} S(tj+1)=S(tj)+(tj+1tj)dtdS(tj)
还可以写为:
S ( t j + 1 ) = S ( t j ) + h F ( t j , S ( t j ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_j, S\left(t_j\right)\right) S(tj+1)=S(tj)+hF(tj,S(tj))
这个公式称为显式欧拉公式,它允许我们在给定 S ( t j ) S\left(t_j\right) S(tj) 状态的情况下计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 状态的近似值。从给定的初始值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)开始,我们可以使用这个公式对状态进行积分直到 S ( t f ) S\left(t_f\right) S(tf);这些 S ( t ) S(t) S(t) 值是微分方程解的近似值。显式欧拉公式是解决初值问题最简单、最直观的方法。在任何状态 ( t j , S ( t j ) ) \left(t_j, S\left(t_j\right)\right) (tj,S(tj)),它在该状态下使用 F F F“指向”下一个状态,然后朝该方向移动 h h h的距离。尽管有更复杂和更准确的方法来解决这些问题,但它们都具有相同的基本结构。因此,我们明确列举了使用显式欧拉公式解决初始值问题的步骤。

假设我们有一个函数 F ( t , S ( t ) ) F(t, S(t)) F(t,S(t)) 计算 d S ( t ) d t \frac{d S(t)}{d t} dtdS(t),一个数值网格 t t t,区间 [ t 0 , t f ] \left[ t_0, t_f\right] [t0,tf],初始状态值 S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0)。我们可以使用以下步骤计算 t t t 中每个 t j t_j tj S ( t j ) S\left(t_j\right) S(tj)

  • S 0 = S ( t 0 ) S_0=S\left(t_0\right) S0=S(t0) 存储在数组 S S S 中。
  • 计算 S ( t 1 ) = S 0 + h F ( t 0 , S 0 ) S\left(t_1\right)=S_0+h F\left(t_0, S_0\right) S(t1)=S0+hF(t0,S0)
  • S 1 = S ( t 1 ) S_1=S\left(t_1\right) S1=S(t1) 存储在 S S S
  • 计算 S ( t 2 ) = S 1 + h F ( t 1 , S 1 ) S\left(t_2\right)=S_1+h F\left(t_1, S_1\right) S(t2)=S1+hF(t1,S1)
  • S 2 = S ( t 1 ) S_2=S\left(t_1\right) S2=S(t1) 存储在 S S S​ 中。
  • 计算 S ( t f ) = S f − 1 + h F ( t f − 1 , S f − 1 ) S\left(t_f\right)=S_{f-1}+h F\left(t_{f-1}, S_{f-1}\right) S(tf)=Sf1+hF(tf1,Sf1)
  • S f = S ( t f ) S_f=S\left(t_f\right) Sf=S(tf) 存储在 S S S
  • S S S 是初始值问题的近似解

当使用具有这种结构的方法时,我们称该方法集成了常微分方程的解。

初始条件为 f 0 = − 1 f_0=-1 f0=1的微分方程 d f ( t ) d t = e − t \frac{d f(t)}{d t}=e^{-t} dtdf(t)=et有精确解 f ( t ) = − e − t f(t)=-e^{-t} f(t)=et 。使用显式欧拉公式,以 0.1 为增量,在 0 和 1 之间近似求解此初始值问题。绘制近似解和精确解之间的差异。

代码处理:

import numpy as np
import matplotlib.pyplot as pltplt.style.use('seaborn-poster')
%matplotlib inlinef = lambda t, s: np.exp(-t) 
h = 0.1 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

在上图中,我们可以看到每个点都是基于前一个点以线性方式进行的近似。从初始值,我们最终可以得到数值网格上解的近似值。如果我们对 h = 0.01 h=0.01 h=0.01 重复该过程,我们会得到更好的近似解:

h = 0.01 
t = np.arange(0, 1 + h, h) 
s0 = -1 s = np.zeros(len(t))
s[0] = s0for i in range(0, len(t) - 1):s[i + 1] = s[i] + h*f(t[i], s[i])plt.figure(figsize = (12, 8))
plt.plot(t, s, 'b--', label='Approximate')
plt.plot(t, -np.exp(-t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()

显式欧拉公式之所以被称为“显式”,是因为它只需要 t j t_j tj 处的信息来计算 t j + 1 t_{j+1} tj+1 处的状态。也就是说, S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 可以根据我们拥有的值(即 t j t_j tj S ( t j ) S\left(t_j\right) S(tj) )显式地编写。隐式欧拉公式可以通过在 t j + 1 t_{j+1} tj+1 周围取 S ( t ) S(t) S(t) 的线性近似并在 t j t_j tj 处计算来导出:
S ( t j + 1 ) = S ( t j ) + h F ( t j + 1 , S ( t j + 1 ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+h F\left(t_{j+1}, S\left(t_{j+1}\right)\right) S(tj+1)=S(tj)+hF(tj+1,S(tj+1))
这个公式很奇特,因为它要求我们知道 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1) 才能计算 S ( t j + 1 ) S\left(t_{j+1}\right) S(tj+1)!不过,有时候我们可以用这个公式来近似求解初值问题。在详细介绍如何使用隐式欧拉公式解决这些问题之前,我们先给出另一个隐式公式,称为梯形公式,它是显式和隐式欧拉公式的平均值:
S ( t j + 1 ) = S ( t j ) + h 2 ( F ( t j , S ( t j ) ) + F ( t j + 1 , S ( t j + 1 ) ) ) S\left(t_{j+1}\right)=S\left(t_j\right)+\frac{h}{2}\left(F\left(t_j, S\left(t_j\right)\right)+F\left(t_{j+1}, S\left(t_{j+1}\right)\right)\right) S(tj+1)=S(tj)+2h(F(tj,S(tj))+F(tj+1,S(tj+1)))
为了说明如何求解这些隐式解,请再次考虑已简化为一阶的摆方程。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081007

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库