java 霍夫曼解码

2024-06-21 10:28
文章标签 java 解码 霍夫曼

本文主要是介绍java 霍夫曼解码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Huffman Tree 进行解码 示例图  

c语言:c语言 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)_霍夫曼的贪婪c语言-CSDN博客

c++:c++ 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)_霍夫曼的贪婪算法设计核心代码-CSDN博客

c#:C# 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

c++ STL:c++ STL 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

java:java 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

python:python 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

javascript:JavaScript 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

我们在之前的文章中 讨论了霍夫曼编码。在这篇文章中,我们将讨论解码。

例子:

输入数据: AAAAAABCCCCCCDDEEEEE
频率: A:6,B:1,C:6,D:2,E:5

编码数据: 00000000000011001010101010111111110101010

哈夫曼树: “#”是用于内部节点的特殊字符,因为
                         内部节点不需要字符字段。 

                    #(20)
                  / \
          #(12) #(8)
         / \ / \
     A(6) C(6) E(5) #(3)
                                 / \
                             B(1) D(2)  

‘A’ 的代码是 ‘00’,‘C’ 的代码是 ‘01’,..

解码数据: AAAAAAABCCCCCCDDEEEEE

输入数据: GeeksforGeeks

字符 频率为
e 10, f 1100, g 011, k 00, o 010, r 1101, s 111

编码的哈夫曼数据: 01110100011111000101101011101000111
解码的哈夫曼数据: geeksforgeeks

请按照以下步骤解决问题:

        注意:要解码编码数据,我们需要霍夫曼树。我们遍历二进制编码数据。要找到与当前位对应的字符,我们使用以下简单步骤:

        1、我们从根开始,依次进行,直到找到叶子。
        2、如果当前位为 0,我们就移动到树的左节点。
        3、如果该位为 1,我们移动到树的右节点。
        4、如果在遍历过程中遇到叶节点,我们会打印该特定叶节点的字符,然后再次从步骤 1 开始继续迭代编码数据。

        下面的代码将一个字符串作为输入,对其进行编码,并将其保存在变量编码字符串中。然后对其进行解码并打印原始字符串。 

下面是上述方法的实现:

// Java program to encode and decode a string using
// Huffman Coding.
import java.util.*;
import java.util.Map.Entry;
 
public class HuffmanCoding {
     
    private static Map<Character, String> codes = new HashMap<>();
    private static Map<Character, Integer> freq = new HashMap<>();
    private static PriorityQueue<MinHeapNode> minHeap = new PriorityQueue<>();
     
    public static void main(String[] args) {
        String str = "geeksforgeeks";
        String encodedString = "";
        String decodedString = "";
        calcFreq(str);
        HuffmanCodes(str.length());
        System.out.println("Character With their Frequencies:");
        for (Entry<Character, String> entry : codes.entrySet()) {
            System.out.println(entry.getKey() + " " + entry.getValue());
        }
        for (char c : str.toCharArray()) {
            encodedString += codes.get(c);
        }
        System.out.println("\nEncoded Huffman data:");
        System.out.println(encodedString);
        decodedString = decodeFile(minHeap.peek(), encodedString);
        System.out.println("\nDecoded Huffman Data:");
        System.out.println(decodedString);
    }
     
    private static void HuffmanCodes(int size) {
        for (Entry<Character, Integer> entry : freq.entrySet()) {
            minHeap.add(new MinHeapNode(entry.getKey(), entry.getValue()));
        }
        while (minHeap.size() != 1) {
            MinHeapNode left = minHeap.poll();
            MinHeapNode right = minHeap.poll();
            MinHeapNode top = new MinHeapNode('$', left.freq + right.freq);
            top.left = left;
            top.right = right;
            minHeap.add(top);
        }
        storeCodes(minHeap.peek(), "");
    }
     
    private static void calcFreq(String str) {
        for (char c : str.toCharArray()) {
            freq.put(c, freq.getOrDefault(c, 0) + 1);
        }
    }
     
    private static void storeCodes(MinHeapNode root, String str) {
        if (root == null) {
            return;
        }
        if (root.data != '$') {
            codes.put(root.data, str);
        }
        storeCodes(root.left, str + "0");
        storeCodes(root.right, str + "1");
    }
     
    private static String decodeFile(MinHeapNode root, String s) {
        String ans = "";
        MinHeapNode curr = root;
        int n = s.length();
        for (int i = 0; i < n; i++) {
            if (s.charAt(i) == '0') {
                curr = curr.left;
            } else {
                curr = curr.right;
            }
            if (curr.left == null && curr.right == null) {
                ans += curr.data;
                curr = root;
            }
        }
        return ans + '\0';
    }
     
}
 
class MinHeapNode implements Comparable<MinHeapNode> {
    char data;
    int freq;
    MinHeapNode left, right;
     
    MinHeapNode(char data, int freq) {
        this.data = data;
        this.freq = freq;
    }
     
    public int compareTo(MinHeapNode other) {
        return this.freq - other.freq;
    }
}
 
//This code is contributed by NarasingaNikhil 

输出:
具有以下频率的字符:

e 10
f 1100
g 011
k 00
o 010
r 1101
s 111

编码的哈夫曼数据:
01110100011111000101101011101000111

解码的哈夫曼数据:
geeksforgeeks

时间复杂度:

        霍夫曼编码算法的时间复杂度为O(n log n),其中n为输入字符串的字符个数。辅助空间复杂度也是O(n),其中n为输入字符串的字符个数。

        在给定的 Java 实现中,时间复杂度主要由使用优先级队列创建 Huffman 树决定,这需要 O(n log n) 时间。空间复杂度主要由用于存储字符频率和代码的映射决定,这需要 O(n) 空间。用于打印代码和存储代码的递归函数也增加了空间复杂度。

比较输入文件大小和输出文件大小: 
        比较输入文件大小和霍夫曼编码的输出文件。我们可以用一种简单的方法计算输出数据的大小。假设我们的输入是一个字符串“geeksforgeeks”,存储在文件 input.txt 中。 

输入文件大小:

输入: “geeksforgeeks”
字符总数即输入长度:13
大小: 13 个字符出现次数 * 8 位 = 104 位或 13 个字节。

输出文件大小:

输入: “geeksforgeeks”

——————————————————
字符 | 频率 | 二进制哈夫曼值 |
——————————————————

   e | 4 | 10 |
   f | 1 | 1100 |   
   g | 2 | 011 |
   k | 2 | 00 |
   o | 1 | 010 |
   r | 1 | 1101 |
   s | 2 | 111 | 

—————————————————

因此要计算输出大小:

e:出现 4 次 * 2 位 = 8 位
f:出现 1 次 * 4 位 = 4 位
g:出现 2 次 * 3 位 = 6 位
k:出现 2 次 * 2 位 = 4 位
o:出现 1 次 * 3 位 = 3 位
r:出现 1 次 * 4 位 = 4 位
s:出现 2 次 * 3 位 = 6 位

总和: 35 位,约 5 字节

        由此可见,编码后的数据量是比较大的,上面的方法也可以帮我们确定N的值,也就是编码后数据的长度。 

这篇关于java 霍夫曼解码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080964

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

java如何解压zip压缩包

《java如何解压zip压缩包》:本文主要介绍java如何解压zip压缩包问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解压zip压缩包实例代码结果如下总结java解压zip压缩包坐在旁边的小伙伴问我怎么用 java 将服务器上的压缩文件解压出来,

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注