java 霍夫曼解码

2024-06-21 10:28
文章标签 java 解码 霍夫曼

本文主要是介绍java 霍夫曼解码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Huffman Tree 进行解码 示例图  

c语言:c语言 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)_霍夫曼的贪婪c语言-CSDN博客

c++:c++ 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)_霍夫曼的贪婪算法设计核心代码-CSDN博客

c#:C# 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

c++ STL:c++ STL 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

java:java 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

python:python 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

javascript:JavaScript 霍夫曼编码 | 贪婪算法(Huffman Coding | Greedy Algo)-CSDN博客

我们在之前的文章中 讨论了霍夫曼编码。在这篇文章中,我们将讨论解码。

例子:

输入数据: AAAAAABCCCCCCDDEEEEE
频率: A:6,B:1,C:6,D:2,E:5

编码数据: 00000000000011001010101010111111110101010

哈夫曼树: “#”是用于内部节点的特殊字符,因为
                         内部节点不需要字符字段。 

                    #(20)
                  / \
          #(12) #(8)
         / \ / \
     A(6) C(6) E(5) #(3)
                                 / \
                             B(1) D(2)  

‘A’ 的代码是 ‘00’,‘C’ 的代码是 ‘01’,..

解码数据: AAAAAAABCCCCCCDDEEEEE

输入数据: GeeksforGeeks

字符 频率为
e 10, f 1100, g 011, k 00, o 010, r 1101, s 111

编码的哈夫曼数据: 01110100011111000101101011101000111
解码的哈夫曼数据: geeksforgeeks

请按照以下步骤解决问题:

        注意:要解码编码数据,我们需要霍夫曼树。我们遍历二进制编码数据。要找到与当前位对应的字符,我们使用以下简单步骤:

        1、我们从根开始,依次进行,直到找到叶子。
        2、如果当前位为 0,我们就移动到树的左节点。
        3、如果该位为 1,我们移动到树的右节点。
        4、如果在遍历过程中遇到叶节点,我们会打印该特定叶节点的字符,然后再次从步骤 1 开始继续迭代编码数据。

        下面的代码将一个字符串作为输入,对其进行编码,并将其保存在变量编码字符串中。然后对其进行解码并打印原始字符串。 

下面是上述方法的实现:

// Java program to encode and decode a string using
// Huffman Coding.
import java.util.*;
import java.util.Map.Entry;
 
public class HuffmanCoding {
     
    private static Map<Character, String> codes = new HashMap<>();
    private static Map<Character, Integer> freq = new HashMap<>();
    private static PriorityQueue<MinHeapNode> minHeap = new PriorityQueue<>();
     
    public static void main(String[] args) {
        String str = "geeksforgeeks";
        String encodedString = "";
        String decodedString = "";
        calcFreq(str);
        HuffmanCodes(str.length());
        System.out.println("Character With their Frequencies:");
        for (Entry<Character, String> entry : codes.entrySet()) {
            System.out.println(entry.getKey() + " " + entry.getValue());
        }
        for (char c : str.toCharArray()) {
            encodedString += codes.get(c);
        }
        System.out.println("\nEncoded Huffman data:");
        System.out.println(encodedString);
        decodedString = decodeFile(minHeap.peek(), encodedString);
        System.out.println("\nDecoded Huffman Data:");
        System.out.println(decodedString);
    }
     
    private static void HuffmanCodes(int size) {
        for (Entry<Character, Integer> entry : freq.entrySet()) {
            minHeap.add(new MinHeapNode(entry.getKey(), entry.getValue()));
        }
        while (minHeap.size() != 1) {
            MinHeapNode left = minHeap.poll();
            MinHeapNode right = minHeap.poll();
            MinHeapNode top = new MinHeapNode('$', left.freq + right.freq);
            top.left = left;
            top.right = right;
            minHeap.add(top);
        }
        storeCodes(minHeap.peek(), "");
    }
     
    private static void calcFreq(String str) {
        for (char c : str.toCharArray()) {
            freq.put(c, freq.getOrDefault(c, 0) + 1);
        }
    }
     
    private static void storeCodes(MinHeapNode root, String str) {
        if (root == null) {
            return;
        }
        if (root.data != '$') {
            codes.put(root.data, str);
        }
        storeCodes(root.left, str + "0");
        storeCodes(root.right, str + "1");
    }
     
    private static String decodeFile(MinHeapNode root, String s) {
        String ans = "";
        MinHeapNode curr = root;
        int n = s.length();
        for (int i = 0; i < n; i++) {
            if (s.charAt(i) == '0') {
                curr = curr.left;
            } else {
                curr = curr.right;
            }
            if (curr.left == null && curr.right == null) {
                ans += curr.data;
                curr = root;
            }
        }
        return ans + '\0';
    }
     
}
 
class MinHeapNode implements Comparable<MinHeapNode> {
    char data;
    int freq;
    MinHeapNode left, right;
     
    MinHeapNode(char data, int freq) {
        this.data = data;
        this.freq = freq;
    }
     
    public int compareTo(MinHeapNode other) {
        return this.freq - other.freq;
    }
}
 
//This code is contributed by NarasingaNikhil 

输出:
具有以下频率的字符:

e 10
f 1100
g 011
k 00
o 010
r 1101
s 111

编码的哈夫曼数据:
01110100011111000101101011101000111

解码的哈夫曼数据:
geeksforgeeks

时间复杂度:

        霍夫曼编码算法的时间复杂度为O(n log n),其中n为输入字符串的字符个数。辅助空间复杂度也是O(n),其中n为输入字符串的字符个数。

        在给定的 Java 实现中,时间复杂度主要由使用优先级队列创建 Huffman 树决定,这需要 O(n log n) 时间。空间复杂度主要由用于存储字符频率和代码的映射决定,这需要 O(n) 空间。用于打印代码和存储代码的递归函数也增加了空间复杂度。

比较输入文件大小和输出文件大小: 
        比较输入文件大小和霍夫曼编码的输出文件。我们可以用一种简单的方法计算输出数据的大小。假设我们的输入是一个字符串“geeksforgeeks”,存储在文件 input.txt 中。 

输入文件大小:

输入: “geeksforgeeks”
字符总数即输入长度:13
大小: 13 个字符出现次数 * 8 位 = 104 位或 13 个字节。

输出文件大小:

输入: “geeksforgeeks”

——————————————————
字符 | 频率 | 二进制哈夫曼值 |
——————————————————

   e | 4 | 10 |
   f | 1 | 1100 |   
   g | 2 | 011 |
   k | 2 | 00 |
   o | 1 | 010 |
   r | 1 | 1101 |
   s | 2 | 111 | 

—————————————————

因此要计算输出大小:

e:出现 4 次 * 2 位 = 8 位
f:出现 1 次 * 4 位 = 4 位
g:出现 2 次 * 3 位 = 6 位
k:出现 2 次 * 2 位 = 4 位
o:出现 1 次 * 3 位 = 3 位
r:出现 1 次 * 4 位 = 4 位
s:出现 2 次 * 3 位 = 6 位

总和: 35 位,约 5 字节

        由此可见,编码后的数据量是比较大的,上面的方法也可以帮我们确定N的值,也就是编码后数据的长度。 

这篇关于java 霍夫曼解码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080964

相关文章

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows