【Gradio】如何设置 Gradio 数据框的样式

2024-06-21 10:28
文章标签 数据 设置 样式 gradio

本文主要是介绍【Gradio】如何设置 Gradio 数据框的样式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

数据可视化是数据分析和机器学习的关键方面。Gradio DataFrame 组件是一种流行的方式,在网络应用程序中显示表格数据(特别是以 pandas DataFrame 对象的形式)。

本文将探讨 Gradio 的最新增强功能,这些功能允许用户整合 pandas 的样式选项,例如为 DataFrame 组件添加颜色,或设置数字的显示精度。

9b552def063318747de20c31cc8076b5.png

 让我们开始吧!

先决条件:我们将在示例中使用 gradio.Blocks 类。如果您还不熟悉它,可以先阅读 Blocks 指南。另外,请确保您使用的是 Gradio 的最新版本: pip install --upgrade gradio 。

 概览 

Gradio DataFrame 组件现在支持来自 pandas 类的 Styler 类型的值。这使我们能够重用 Styler 类的丰富现有 API 和文档,而不是自己发明一种新的样式格式。以下是一个完整示例的外观:

# 导入pandas和gradio库
import pandas as pd 
import gradio as gr# 创建一个样本数据框
df = pd.DataFrame({"A" : [14, 4, 5, 4, 1], "B" : [5, 2, 54, 3, 2], "C" : [20, 20, 7, 3, 8], "D" : [14, 3, 6, 2, 6], "E" : [23, 45, 64, 32, 23]
}) # 使用样式对数据框进行处理,高亮每列的最大值,高亮颜色为浅绿色
styler = df.style.highlight_max(color = 'lightgreen', axis = 0)# 在Gradio交互界面上展示经过样式处理的数据框
with gr.Blocks() as demo:gr.DataFrame(styler)# 启动Gradio界面
demo.launch()

Styler 类可以用来对数据框应用条件格式和样式,使它们更具视觉吸引力和可解释性。您可以突出显示某些值,应用渐变,甚至使用自定义 CSS 来样式化 DataFrame。Styler 对象应用于 DataFrame,并返回一个具有相关样式属性的新对象,然后可以直接预览,或在 Gradio 界面中动态渲染。

要了解更多关于 Styler 对象的信息,请阅读官方文档:https://pandas.pydata.org/docs/user_guide/style.html

 字体颜色 

除了突出显示单元格,您可能还想为单元格内的特定文本上色。以下是如何更改某些列的文本颜色:

# 导入pandas和gradio库
import pandas as pd 
import gradio as gr# 创建一个样本数据框
df = pd.DataFrame({"A" : [14, 4, 5, 4, 1], "B" : [5, 2, 54, 3, 2], "C" : [20, 20, 7, 3, 8], "D" : [14, 3, 6, 2, 6], "E" : [23, 45, 64, 32, 23]
}) # 写一个函数来修改文本颜色
def highlight_cols(x): # 首先复制输入的数据框df = x.copy() # 将所有元素的颜色设为紫色df.loc[:, :] = 'color: purple'# 将'B', 'C', 'E'列的元素颜色设为绿色df[['B', 'C', 'E']] = 'color: green'# 返回被修改颜色的数据框return df # 应用上述颜色修改函数
s = df.style.apply(highlight_cols, axis = None)# 在Gradio交互界面上展示上述处理过的数据框
with gr.Blocks() as demo:gr.DataFrame(s)# 启动Gradio界面
demo.launch()

这段代码使用Gradio UI创建了一个可交互界面,将一个处理过的Pandas DataFrame展示出来。这个处理过的DataFrame改变了列'B', 'C', 'E'的文本颜色,对于数据分析和展示来说,这种突出显示关键列的方式可以帮助分析者更好地关注和理解数据。

在这个脚本中,我们定义了一个自定义函数 highlight_cols,它将所有单元格的文本颜色更改为紫色,但对 B、C 和 E 列使用绿色进行了覆盖。它看起来是这样的:

b69c358e25046010a1f3ca7af7a9828b.png

 显示精度 

有时候,你处理的数据可能会有很长的浮点数,你可能只想显示固定数量的小数位数以简化显示。pandas 的 Styler 对象允许你格式化显示的数字精度。以下是如何做到这一点的方法:

# 导入pandas和gradio库
import pandas as pd
import gradio as gr# 创建一个包含浮点数的样本数据框
df = pd.DataFrame({"A" : [14.12345, 4.23456, 5.34567, 4.45678, 1.56789], "B" : [5.67891, 2.78912, 54.89123, 3.91234, 2.12345], # ... 其他列
}) # 将数字的精度设置为2位小数
s = df.style.format("{:.2f}")# 在Gradio交互界面中展示这个处理过的数据框
with gr.Blocks() as demo:gr.DataFrame(s)# 启动Gradio界面
demo.launch()

在这个脚本中,Styler 对象的 format 方法被用来将数字的精度设置为两位小数。现在看起来清爽多了:

af2910c4b51ecb57e1573c562cdcd2fa.png

关于交互性的注意事项 

需要记住的一点是,gradio DataFrame 组件在非交互式(即“静态”模式)时只接受 Styler 对象。如果 DataFrame 组件是交互式的,那么样式信息将被忽略,相反会显示原始表格值。

DataFrame 组件默认是非交互式的,除非它被用作事件的输入。在这种情况下,您可以通过设置 interactive 属性来强制组件为非交互式,如下所示:

c = gr.DataFrame(styler, interactive=False)

 结论 🎉 

这只是使用 gradio.DataFrame 组件与 Styler 类来自 pandas 的可能性的一点体验。尝试一下,告诉我们你的想法!

这篇关于【Gradio】如何设置 Gradio 数据框的样式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080961

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java实现为PDF设置背景色和背景图片

《Java实现为PDF设置背景色和背景图片》在日常的文档处理中,PDF格式因其稳定性和跨平台兼容性而广受欢迎,本文将深入探讨如何利用Spire.PDFforJava库,以简洁高效的方式为你的PDF文档... 目录库介绍与安装步骤Java 给 PDF 设置背景颜色Java 给 PDF 设置背景图片总结在日常的

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Java利用Spire.XLS for Java设置Excel表格边框

《Java利用Spire.XLSforJava设置Excel表格边框》在日常的业务报表和数据处理中,Excel表格的美观性和可读性至关重要,本文将深入探讨如何利用Spire.XLSforJava库... 目录Spire.XLS for Java 简介与安装Maven 依赖配置手动安装 JAR 包核心API介

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建