PyTorch 1.1.0发布,官方支持TensorBoard,还有更多性能和分布式功能的提升!

本文主要是介绍PyTorch 1.1.0发布,官方支持TensorBoard,还有更多性能和分布式功能的提升!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Facebook

编译:ronghuaiyang

导读

Facebook刚刚发布了PyTorch的最新版本,PyTorch1.1.0,这是自从发布PyTorch1.0以来的又一个重大的更新


Facebook刚刚发布了PyTorch的最新版本,PyTorch1.1.0,这是自从发布PyTorch1.0以来的又一个重大的更新,在这个版本中,最最显眼的一个更新就是官方支持TensorBoard了,之前大家都是用的TensorBoardX,这次,终于可以光明正大的使用TensorBoard了,顺便吐槽一下visdom,确实不如TensorBoard好用。

除了TensorBoard之外,其实还有不少重要的更新,下面给大家提供一些摘要,给大家先过目一遍,我列出了一些要点,更多的内容大家可以去看看原文。

注意:不再支持CUDA 8.0

重点

TensorBoard (试验)

使用TensorBoard对可视化和模型调试提供一流的本地支持,这是一个用于检查和理解训练运行、张量和图的web应用程序套件。PyTorch现在支持TensorBoard通过一个简单的 fromtorch.utils.tensorboardimportSummaryWriter命令来写入日志。直方图、嵌入、标量、图像、文本、图形,以及更多东西都可以在训练过程中进行可视化。目前,TensorBoard支持还处于试验阶段。

640?wx_fmt=png

[JIT] ScriptModules中的属性

可以在 ScriptModule上分配属性,方法是用 torch.jit.Attribute指定类型。属性类似于参数或缓冲区,但可以是任何类型。当你调用 torch.jit.save()时,它们将与任何参数/缓冲区一起被序列化,因此它们是在模型中存储任意状态的好方法。

例子:

class Foo(torch.jit.ScriptModule):	def __init__(self, a_dict):	super(Foo, self).__init__(False)	self.words = torch.jit.Attribute([], List[str])	self.some_dict = torch.jit.Attribute(a_dict, Dict[str, int])	@torch.jit.script_method	def forward(self, input: str) -> int:	self.words.append(input)	return self.some_dict[input]

[JIT] 在TorchScript中支持字典和列表

TorchScript现在对列表和字典类型提供了健壮的支持。它们的行为很像Python列表和字典,支持大多数内置方法,包括简单的包含操作和 forin的构造方式。

[JIT] 在TorchScript中用户自己定义类 (试验)

对于更复杂的有状态操作,TorchScript现在支持用 @torch.jit.script标注类。使用这种方法的类可以像其他TorchScript模块一样在c++中jit编译和加载。

@torch.jit.script	
class Pair:	def __init__(self, first, second)	self.first = first	self.second = second	def sum(self):	return self.first + self.second

DistributedDataParallel新功能和指南

nn.parallel.DistributedDataParallel:现在可以封装multi-GPU模块,可以在一台服务器上使用模型并行,以及多台服务器上使用数据并行。

突破性的改进

  • Tensor.set_: Tensor中的 device不再可以通过 Tensor.set_来改变了. 这通常发生在使用默认CUDA设备设置Tensor,然后在另一个CUDA设备的 Storage中交换Tensor时。相反,需要从一开始就在正确的设备上建立Tensor。

  • 注意 lr_scheduler.step()的顺序更改了。

  • torch.unique: 把 sorted的默认值改成了 True.

  • [JIT] 重命名isTensor接口为isCompleteTensor.

  • [JIT] 去掉了GraphExecutor的python绑定.

  • [C++]: many methods on 在 Type上的许多方面现在不再退出了,可以使用函数或者Tensor的方法来起到同样的效果.

  • [C++]TensorOptions 的 Backend构造器不存在了. (18137).

  • [C++, Distributed]: 去掉了c10d ProcessGroup::getGroupRank 也去掉了.

Tensors / dtypes

  • torch.bool: 增加了对 torch.bool类型以及该类型张量 (存储为1-byte)的支持. 支持NumPy的转化,但是操作现在是有限制的.

优化器

  • optim.lr_scheduler.CyclicLR: 支持循环学习率和动量.

  • optim.lr_scheduler.CosineAnnealingWarmRestarts: 新的学习率策略:带热身重启的随机梯度下降.

  • 支持多个同步的学习率策略.

分布式

  • torch.distributions: 现在支持多重继承.

采样

  • quasirandom.SobolEngine: 新采样器.

DistributedDataParallel

  • nn.parallel.DistributedDataParallel: 现在支持带无用参数的模型(例如控制流,比如adaptive softmax等等).

提升

  • torch.mintorch.maxtorch.mediantorch.modetorch.kthvaluetorch.symeigtorch.eigtorch.pstrftorch.qrtorch.geqrftorch.solvetorch.slogdettorch.sorttorch.topktorch.gelstorch.triangular_solve 现在返回一个名称元组来描述输出.

  • torch.empty (还有其他的构造函数): 现在可以接受 pin_memory 参数; 现在不用 torch.Storage也可以就那些pin了.. .

  • torch.histc: 现在支持CUDA了.

  • torch.unique: 增加了 return_counts.

  • torch.logspace: 增加了指定对数底的功能.

  • torch.set_printoptions: 增加对科学计数的支持 .

  • torch.btrifact 现在可以操作超过3维的tensor.

  • torch.kthvalue: 支持CUDA.

  • torch.abs: 支持 uint8 和 int8 类型.

  • torch.stacktorch.cat: 支持CPU半精度tensors.

  • torch.cross: 支持负维度.

  • torch.lerp: 增加像支持Tensor一样支持 weight.

  • torch.transpose: 和NumPy变得一样了: 1-d和0-d数组都可以接受,返回原来一样的数组.

  • torch.linspacetorch.logspace 现在可以使用 steps=1 和 start!=end

  • torch.cholesky: 把导数从三角形矩阵变成对称矩阵.

  • torch.lerp: 提升了数值稳定性.

  • torch.logdettorch.slogdet: 提升了数值精度.

  • Tensor.__contains__ 现在支持了.

  • Tensor.fill_ 和 torch.zeros 在CPU上支持半精度.

  • Tensor.resize_as_Tensor.view: 在CPU上支持半精度.

  • Tensorindexing: 允许通过NumPy布尔值来进行索引.

  • nn.EmbeddingBag: 支持半精度密集后端.

  • nn.Embedding: 修改了密集嵌入来和双后端一起使用.

  • nn.MaxPool1d: 允许列表和元组作为 output_size输入.

  • nn.CTCLoss: 通过 zero_infinity参数可以支持对无限的损失置零.

  • nn.Dropout: 支持在eval时使能.

  • nn.MSELoss: 对不合法的广播进行告警.

  • nn.Module.load_state_dict: 增加两个返回值 missing_keys 和 unexpected_keys.

  • nn.parallel.data_parallel: 强制设备匹配 device_ids.

  • torch.device: 过去只接受设备好的地方,现在都可以用这个了.

  • dtype.int8 这个类型的tensors现在可以转换为NumPy数组了.

  • nn.functional.gumbel_softmax: 使用 dim参数运行多个维度的输入.

  • nn.functional.cosine_similarity: 提高了精度.

  • torch.autograd: 不再保存不需要的输入,提高了内存效率.

  • torch.autograd.profiler: 增加了自身的CPU时间,总的CPU时间.

  • DataLoader: 支持接受一个用户自定义的内存pinning函数.

  • DataLoader: 在EINTR重试libshm .

  • DataLoader: 修改了使用 pin_memory 和 PackedSequence的一个问题.

  • data.utils.collatedata.utils.pin_memory: 现在可以保存名字元组.

  • 在许多的索引错误情况下,使用 IndexError 代替 RuntimeError .

  • 在CPU上支持索引 torch.float16 tensor.

  • 在inplace操作上增加(有限的)错误检测.

  • utils.checkpoint.checkpoint: 支持 None 作为参数 .

  • torch.autograd:为 one of the variables neededforgradient computation has been modifiedbyan inplace operation 异常增加更多的信息.

  • cuda.synchronize: 增加一个设备参数.

  • cuda.reset_max_memory_*: 现在支持了.

  • distributions.Independent: 现在可以计算KL散度了.

  • torch.distributed.new_group: 现在支持覆盖默认的backend.

性能

重点

  • nn.BatchNorm CPU推理速度提升了最高19倍.

  • nn.AdaptiveAvgPool: size=1时通常可以加速30倍.

  • nn.EmbeddingBag CPU性能提升了4倍.

  • Tensor.copy_: 对于大的tensor拷贝加速了2~3倍.

  • torch.nonzero: 在CPU上现在比numpy块2倍.

  • 改进用于为Pascal架构和更新的GPU提升了缓存分配器的性能,Mask-RCNN的内存利用率提高了10-20%。

  • reduction functions: 对于某些大Tensor的情况下,加速了50-80%.

  • [JIT] Graph fuser: 在广播的存在下,更好地融合向后图.

  • [JIT] Graph fuser: batch_norm 推理时的融合.

  • [JIT] Graph fuser: layer_norm 推理时的融合. 

640?wx_fmt=png— END—

英文原文:https://github.com/pytorch/pytorch/releases

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

这篇关于PyTorch 1.1.0发布,官方支持TensorBoard,还有更多性能和分布式功能的提升!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080845

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Java实现预览与打印功能详解

《Java实现预览与打印功能详解》在Java中,打印功能主要依赖java.awt.print包,该包提供了与打印相关的一些关键类,比如PrinterJob和PageFormat,它们构成... 目录Java 打印系统概述打印预览与设置使用 PageFormat 和 PrinterJob 类设置页面格式与纸张

MySQL 8 中的一个强大功能 JSON_TABLE示例详解

《MySQL8中的一个强大功能JSON_TABLE示例详解》JSON_TABLE是MySQL8中引入的一个强大功能,它允许用户将JSON数据转换为关系表格式,从而可以更方便地在SQL查询中处理J... 目录基本语法示例示例查询解释应用场景不适用场景1. ‌jsON 数据结构过于复杂或动态变化‌2. ‌性能要

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon