2020年里5个必须具备的数据科学技能

2024-06-21 09:08

本文主要是介绍2020年里5个必须具备的数据科学技能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Joos Korstanje

编译:ronghuaiyang

导读

长期以来,“R, Python, SQL和机器学习”一直是数据科学家的标准工作描述。但随着该领域的发展,这已不足以在就业市场上保持竞争力。

更新你的技能,为2020年数据就业市场准备!

数据科学是一个竞争激烈的领域,人们正在迅速积累越来越多的技能和经验。这导致了机器学习工程师的工作描述越来越丰富,因此我对2020年的建议是,所有的数据科学家也需要成为开发人员。

为了保持竞争力,你一定要为新工具带来的新工作方式做好准备。

1. 敏捷

敏捷是一种组织工作的方法,已经被开发团队大量使用。数据科学的角色越来越多地由那些最初的技能是纯软件开发的人来扮演,这就产生了机器学习工程师的角色。

越来越多的数据科学家/机器学习工程师被管理为开发人员:不断地改进现有代码库中的机器学习元素。

对于这种类型的角色,数据科学家必须了解基于Scrum方法的敏捷工作方式。它为不同的人定义了几个角色,这个角色定义确保了持续的改进和顺利地实现。

2. Github

Git和Github是为开发人员提供的软件,在管理不同版本的软件时非常有用。它们跟踪对代码库所做的所有更改,此外,当多个开发人员在同一时间对同一项目进行更改时,它们还为协助提供了真正的便利。

随着数据科学家的角色变得越来越偏重于开发,使用这些开发工具就成为了关键。Git正在成为一种重要的工作需求,要适应使用Git的最佳实践需要一定的时间。当你独自一人或与他人合作时,很容易开始使用Git,但是当你加入一个有Git专家的团队,而你仍然是一个新手时,你可能会比想象的更加困难。

3. 工业化

数据科学也在改变的是我们思考项目的方式。数据科学家仍然是用机器学习回答业务问题的人,一如既往。但是,越来越多的数据科学项目是为生产系统开发的,例如作为大型软件中的微服务。

与此同时,高级模型的CPU和RAM消耗越来越大,特别是在处理神经网络和深度学习时。

对于数据科学家的工作描述,不仅要考虑模型的准确性,还要考虑项目的执行时间或其他工业化方面,这一点变得越来越重要。

4. 云和大数据

虽然机器学习的工业化正成为数据科学家的一个严重的约束,但它也成为数据工程师和IT的一个严重约束。

当数据科学家可以致力于减少模型所需的时间时,IT人员可以通过改变速度更快的计算服务来做出贡献,这些计算服务通常可以通过以下一种或两种方式获得:

  • 云:将计算资源转移到外部供应商,如AWS、Microsoft Azure或谷歌云,使得建立一个可以从远处访问的非常快速的机器学习环境变得非常容易。这要求数据科学家对云功能有基本的了解,例如:使用远程服务器而不是自己的计算机,或者使用Linux而不是Windows / Mac。

PySpark可以在并行(大数据)系统上编写Python
  • 大数据:更快的第二个方面是使用Hadoop和Spark,这两个工具允许同时在多台计算机(工作节点)上并行处理任务。这要求使用不同的方法来实现数据科学家的模型,因为你的代码必须允许并行执行。

5. 自然语言处理, 神经网络和深度学习

最近,数据科学家仍然认为NLP和图像识别仅仅是数据科学的专门化,并不是所有人都必须掌握。

你需要理解深度学习: 基于人脑思想的机器学习

但是,即使在“常规”业务中,图像分类和NLP的用例也越来越频繁。在当今时代,至少对这些模型没有基本的了解是不可接受的。

即使你在工作中没有此类模型的直接应用,也可以很容易地找到实际操作的项目,并使你能够理解图像和文本项目中所需的步骤。

祝你好运,同时提高你的技能,不要犹豫,保持关注

—END—

英文原文:https://towardsdatascience.com/top-5-must-have-data-science-skills-for-2020-a5a53226b168

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于2020年里5个必须具备的数据科学技能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080794

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒