文本分类大综述:从浅层到深度学习

2024-06-21 07:48

本文主要是介绍文本分类大综述:从浅层到深度学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
http://link.zhihu.com/?target=https%3A//arxiv.org/pdf/2008.00364.pdf
01

摘要

文本分类是自然语言处理中最基本、最基本的任务。过去十年,由于深度学习取得了前所未有的成功,这一领域的研究激增。大量的方法、数据集和评价指标已经在文献中提出,提高了全面和更新综述的需要。本文通过回顾1961年到2020年的先进方法的现状来填补这一空白,侧重于从浅到深的模型学习。我们根据所涉及的文本和用于特征提取和分类的模型创建文本分类的分类法。然后我们详细讨论每一个类别,处理支持预测测试的技术发展和基准数据集。本综述还提供了不同技术之间的综合比较,以及确定各种评估指标的优缺点。最后,总结了本研究的关键意义、未来研究方向和面临的挑战。

01

介绍

在许多自然语言处理(NLP)应用中,文本分类(为文本指定预定义标签的过程)是一个基本和重要的任务, 如情绪分析[1][2][3],主题标签[4][5][6],问答[7][8][9]和对话行为分类。在信息爆炸的时代,手工对大量文本数据进行处理和分类是一项耗时且具有挑战性的工作。此外,手工文本分类的准确性容易受到人为因素的影响,如疲劳、专业知识等。人们希望使用机器学习方法来自动化文本分类过程,以产生更可靠和较少主观的结果。此外,通过定位所需信息,可以提高信息检索效率,缓解信息超载的问题。

图1给出了在浅层和深层分析的基础上,文本分类所涉及的步骤流程图。文本数据不同于数字、图像或信号数据。它需要NLP技术来仔细处理。第一个重要的步骤是对模型的文本数据进行预处理。浅层学习模型通常需要通过人工方法获得良好的样本特征,然后用经典的机器学习算法对其进行分类。因此,特征提取在很大程度上制约了该方法的有效性。然而,与浅层模型不同,深度学习通过学习一组直接将特征映射到输出的非线性转换,将特征工程集成到模型拟合过程中。
在这里插入图片描述
主要文本分类方法的示意图如图2所示。从20世纪60年代到21世纪10年代,基于浅层学习的文本分类模型占据了主导地位。浅层学习意味着在乐此不疲的模型,如 NaÃŕve Bayes(NB)[10], K-近邻(KNN)[11],和支持向量机(SVM)[12]。与早期基于规则的方法相比,该方法在准确性和稳定性方面具有明显的优势。然而,这些方法仍然需要进行特征工程,这是非常耗时和昂贵的。此外,它们往往忽略文本数据中自然的顺序结构或上下文信息,使学习词汇的语义信息变得困难。自2010年代以来,文本分类逐渐从浅层学习模式向深度学习模式转变。与基于浅层学习的方法相比,深度学习方法避免了人工设计规则和特征,并自动提供文本挖掘的语义意义表示。因此,大部分文本分类研究工作都是基于DNNs的,这是一种计算复杂度很高的数据驱动方法。很少有人关注于用浅层学习模型来解决计算和数据的局限性。在这里插入图片描述
在文献中,Kowsari等[13]考虑了不同的文本特征提取、降维方法、文本分类的基本模型结构和评价方法。Minaee等人[14]回顾了最近基于深度学习的文本分类方法、基准数据集和评估指标。与现有的文本分类研究不同,我们利用近年来的研究成果对现有的模型进行了从浅到深的总结。浅层学习模型强调特征提取和分类器设计。一旦文本具有精心设计的特征,就可以通过训练分类器来快速收敛。在不需要领域知识的情况下,DNNs可以自动进行特征提取和学习。然后给出了单标签和多标签任务的数据集和评价指标,并从数据、模型和性能的角度总结了未来的研究挑战。此外,我们在4个表中总结了各种信息,包括经典浅层和深度学习模型的必要信息、DNNs的技术细节、主要数据集的主要信息,以及在不同应用下的最新方法的一般基准。总而言之,本研究的主要贡献如下:

我们在表1中介绍了文本分类的过程和发展,并总结了经典模式在出版年份方面的必要信息,包括地点、应用、引用和代码链接。

根据模型结构,从浅层学习模型到深度学习模型,对主要模型进行了全面的分析和研究。我们在表2中对经典或更具体的模型进行了总结,并主要从基本模型、度量和实验数据集方面概述了设计差异。

我们介绍了现有的数据集,并给出了主要的评价指标的制定,包括单标签和多标签文本分类任务。我们在表3中总结了基本数据集的必要信息,包括类别的数量,平均句子长度,每个数据集的大小,相关的论文和数据地址。

我们在表5中总结了经典模型在基准数据集上的分类精度得分,并通过讨论文本分类面临的主要挑战和本研究的关键意义来总结综述结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于文本分类大综述:从浅层到深度学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080626

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O