深度学习模型训练中 学习率参数 设置大小问题及设置合适值

2024-06-21 03:12

本文主要是介绍深度学习模型训练中 学习率参数 设置大小问题及设置合适值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》

😊总结不易,多多支持呀🌹感谢您的点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖


在这里插入图片描述

目录

  • 一、学习率大小问题
    • 1.1 学习率太大问题
    • 1.2 学习率太小问题
  • 二、设置合适的学习率
    • 2.1 学习率预热和逐步衰减
    • 2.2 使用学习率调度器
      • 2.2.1 StepLR
      • 2.2.2 MultiStepLR
      • 2.2.3 ExponentialLR
      • 2.2.4 CosineAnnealingLR
      • 2.2.5 ReduceLROnPlateau
      • 2.2.6 CyclicLR
      • 2.2.7 OneCycleLR
      • 2.2.8 CosineAnnealingWarmRestarts
      • 2.2.9 LambdaLR
      • 2.2.10 PolynomialLR
      • 2.2.11 代码
    • 2.3 使用自适应学习率优化器
    • 2.4 学习率查找器
    • 2.5 经验和试验
    • 2.6 逐层调节学习率
  • 三、梯度裁剪
  • 四、总结

一、学习率大小问题

1.1 学习率太大问题

在深度学习训练过程中,如果设置的学习率过大,会导致以下几个问题:

训练过程不稳定
过大的学习率会导致权重更新幅度过大,使得损失函数的值在每次迭代中剧烈波动。模型的参数可能不断在损失函数的不同区域之间跳跃,导致训练过程不稳定,甚至可能出现发散的情况。

无法收敛
由于每次更新的步伐太大,模型可能永远无法到达或接近全局最优点或局部最优点。损失函数的值不会稳定在一个较低的范围内,模型的性能无法提高,训练也无法收敛。

梯度爆炸
在使用较大学习率时,可能会导致梯度爆炸的问题。梯度值会变得非常大,导致参数更新变得极其巨大。这不仅使得训练变得极其困难,还可能使参数达到极端值,进一步加剧训练的不稳定性。

性能不佳
即使模型勉强收敛,最终得到的模型性能也往往不佳。这是因为参数在损失函数表面上跳跃过大,无法精细调整到最优解附近,导致模型的泛化能力较差,表现不理想。

1.2 学习率太小问题

学习率衰减得太早,可能会导致以下几种情况:

训练过程变得缓慢
当学习率衰减得太早,模型参数更新的步伐变小,导致每次迭代的权重调整幅度减小。这可能会使得模型在全局最优解附近的搜索速度变得非常缓慢,导致训练时间大大增加。

模型可能会停留在局部最优
如果学习率衰减得太早,模型的参数更新步伐变小,可能会使得模型更容易陷入局部最优,而无法跳出这些局部最优去寻找全局最优解。这是因为较小的学习率降低了模型在损失函数表面进行大幅度搜索的能力。

未能充分利用初始高学习率阶段
在训练初期,较高的学习率有助于模型快速收敛,找到一个较优的解。如果学习率过早衰减,模型未能充分利用初始高学习率阶段的快速收敛特性,可能导致模型训练效率降低,甚至不能达到理想的初始收敛效果。

模型训练不充分
在训练的早期阶段,模型的参数还在快速调整过程中。如果此时学习率过早衰减,模型可能还没有充分训练到一个较好的状态,导致最终的模型性能不理想。早期的参数更新需要较大的步伐来适应复杂的损失表面结构,而过早衰减的学习率会限制这种能力。

二、设置合适的学习率

选择和调整合适的学习率是深度学习训练中至关重要的一部分。

2.1 学习率预热和逐步衰减

在训练开始时,使用较低的学习率,然后逐步增加到目标学习率(预热阶段),接着在训练过程中逐步衰减学习率。

具体实现代码见下:

import torch
import torch.nn as nn
import torch.optim as optim# 假设我们有一个简单的神经网络
model = nn.Sequential(nn.Linear(10, 50),nn.ReLU(),nn.Linear(50, 1)
)optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.MSELoss()# 使用 StepLR 和学习率预热
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)for epoch in range(100):optimizer.zero_grad()outputs = model(torch.randn(32, 10))loss = criterion(outputs, torch.randn(32, 1))loss.backward()optimizer.step()scheduler.step()  # 更新学习率print(f'Epoch {epoch+1}, Loss: {loss.item()}, LR: {scheduler.get_last_lr()[0]}')

2.2 使用学习率调度器

PyTorch 提供了多种学习率调度器,可以在训练过程中根据不同策略调整学习率。Pytorch提供的常用学习率调度器见下,这些调度器的具体使用代码见本小结最后。

2.2.1 StepLR

按照固定步长衰减学习率。

import torch.optim as optim# StepLR: 每隔 step_size 个 epoch,学习率乘以 gamma
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

2.2.2 MultiStepLR

在预定义的 epoch 列表中进行学习率衰减。

# MultiStepLR: 在 milestones 列表中指定的 epoch,学习率乘以 gamma
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30, 80], gamma=0.1)

2.2.3 ExponentialLR

以指数衰减的方式调整学习率。

# ExponentialLR: 每个 epoch,学习率乘以 gamma
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

2.2.4 CosineAnnealingLR

使用余弦退火方法调整学习率。

# CosineAnnealingLR: 在 T_max 个 epoch 内从初始学习率衰减到 eta_min
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=50, eta_min=0)

2.2.5 ReduceLROnPlateau

当监控的指标停止改善时,降低学习率。也叫监控验证损失。

# ReduceLROnPlateau: 当指标(如验证损失)不再改善时降低学习率
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True)

2.2.6 CyclicLR

在指定的范围内循环调整学习率。

# CyclicLR: 在 base_lr 和 max_lr 之间循环学习率
scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.001, max_lr=0.01, step_size_up=2000, mode='triangular')

2.2.7 OneCycleLR

在一个周期内调整学习率,适合于一种特定的学习率调整策略。

# OneCycleLR: 在一个周期内从初始学习率调整到 max_lr 再回到初始学习率
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=len(dataloader), epochs=10)

2.2.8 CosineAnnealingWarmRestarts

使用余弦退火方法,并进行周期性重启。也叫热重启策略。

# CosineAnnealingWarmRestarts: 使用余弦退火并周期性重启
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)

2.2.9 LambdaLR

使用自定义的函数调整学习率。

# LambdaLR: 使用自定义函数调整学习率
lambda1 = lambda epoch: 0.65 ** epoch
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)

2.2.10 PolynomialLR

PolynomialLR调度器在 PyTorch 1.12 版本中引入,可以将学习率按多项式递减。

# PolynomialLR: 按多项式递减学习率
scheduler = optim.lr_scheduler.PolynomialLR(optimizer, total_iters=50, power=2.0)

2.2.11 代码

以下是一个使用这些调度器的示例:

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的模型
model = nn.Sequential(nn.Linear(10, 50),nn.ReLU(),nn.Linear(50, 1)
)# 使用 SGD 优化器
optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.MSELoss()# 选择一个学习率调度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)for epoch in range(100):optimizer.zero_grad()outputs = model(torch.randn(32, 10))loss = criterion(outputs, torch.randn(32, 1))loss.backward()optimizer.step()scheduler.step()  # 更新学习率print(f'Epoch {epoch+1}, Loss: {loss.item()}, LR: {scheduler.get_last_lr()[0]}')

输出见下:
在这里插入图片描述

2.3 使用自适应学习率优化器

自适应学习率优化器(如 Adam、RMSprop、Adagrad)能够根据梯度自动调整学习率,避免手动调整的麻烦。

具体实现代码见下:

import torch
import torch.nn as nn
import torch.optim as optimmodel = nn.Sequential(nn.Linear(10, 50),nn.ReLU(),nn.Linear(50, 1)
)# 使用 Adam 优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()for epoch in range(100):optimizer.zero_grad()outputs = model(torch.randn(32, 10))loss = criterion(outputs, torch.randn(32, 1))loss.backward()optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}, LR: {optimizer.param_groups[0]["lr"]}')

2.4 学习率查找器

使用学习率查找器(如 fastai 提供的 LRFinder),可以通过线性增长学习率来找到一个合适的初始学习率。

from fastai.vision.all import *# 假设我们有一个数据集和模型
dls = ImageDataLoaders.from_folder(path, valid_pct=0.2, item_tfms=Resize(224))
learn = cnn_learner(dls, resnet34, metrics=error_rate)# 使用学习率查找器
learn.lr_find()

2.5 经验和试验

根据经验和实验选择合适的学习率,通常可以从一个较大的值(如 0.1)开始,观察损失和准确率的变化。如果模型发散(损失剧增),减小学习率;如果收敛很慢,增加学习率。

2.6 逐层调节学习率

在一些复杂的网络结构中,可以对不同层使用不同的学习率。例如,对较低层使用较低的学习率,对较高层使用较高的学习率。

实例代码见下:

import torch
import torch.nn as nn
import torch.optim as optimclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = torch.flatten(x, 1)x = self.fc1(x)x = self.fc2(x)return xmodel = MyModel()optimizer = optim.SGD([{'params': model.conv1.parameters(), 'lr': 0.01},{'params': model.conv2.parameters(), 'lr': 0.01},{'params': model.fc1.parameters(), 'lr': 0.1},{'params': model.fc2.parameters(), 'lr': 0.1}
], lr=0.1)criterion = nn.CrossEntropyLoss()for epoch in range(100):optimizer.zero_grad()outputs = model(torch.randn(32, 1, 28, 28))loss = criterion(outputs, torch.randint(0, 10, (32,)))loss.backward()optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}')

三、梯度裁剪

梯度裁剪可以防止梯度爆炸。通过在每次反向传播后对梯度进行裁剪,确保其不会超过设定的阈值。

实例代码:

for epoch in range(100):optimizer.zero_grad()outputs = model(torch.randn(32, 10))loss = criterion(outputs, torch.randn(32, 1))loss.backward()# 梯度裁剪torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}')

四、总结

以上就是深度学习模型训练中学习率参数设置大小问题及设置合适值的分析过程,总结了一部分,欢迎留言补充!

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

这篇关于深度学习模型训练中 学习率参数 设置大小问题及设置合适值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080046

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造