【车载开发系列】CAN通信总线再理解(中篇)

2024-06-21 01:28

本文主要是介绍【车载开发系列】CAN通信总线再理解(中篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【车载开发系列】CAN通信总线再理解(中篇)

    • 九. CAN总线标准
    • 十. CAN物理层
    • 十一. CAN数据链路层
      • 1)CAN的通信帧类型
      • 2)CAN的标准帧格式
        • 1. CAN ID
        • 2. 数据场
      • 3)CAN总线仲裁
    • 十二. CAN应用层
      • 1)CANopen
      • 2)J1939
      • 3)DeviceNet

九. CAN总线标准

  • CAN总线标准有两个,即ISO11898和ISO11519,两者差分电平特性不同。
  1. ISO11898高低电平幅度低(高电压3.5V,低电压1.5V),对应的传输速度快,所以适用于高速CAN;
  2. ISO11519高低电平幅度大(高电压4.0V,低电压1.0V),对应的传输速度慢些,所以适用于低速CAN;

十. CAN物理层

  1. 多个节点连接,只要有一个为低电平,总线就为低电平,只有所有节点输出高电平时,才为高电平。所谓"线与"。
  2. CAN总线有5个连续相同位后,就插入一个相反位,产生跳变沿,用于同步。从而消除累积误差。
  3. CAN的传输速度与距离成反比。
  4. CAN总线上的终端电阻是120Ω,因为电缆的特性阻抗为120Ω,为了模拟无限远的传输线

十一. CAN数据链路层

1)CAN的通信帧类型

  • CAN总线传输的是CAN帧,CAN的通信帧分成五种,分别为数据帧、远程帧、错误帧、过载帧和帧间隔。
帧类型英文帧作用
数据帧Data Frame用于发送单元向接收单元传送数据的帧,使用最多的帧类型
遥控帧Remote Frame用于接收单元向具有相同ID的发送单元请求数据的帧
错误帧Error Frame用于当检测出错时向其他单元通知用的错误的帧
过载帧Overload Frame用于接收单元告诉发送单元,通知其尚未做好接收准备的帧
间隔帧Inter Frame Space用于将数据帧及遥控帧与前面的帧分离开来的帧

2)CAN的标准帧格式

位名位名位数说明
SOF起始位1位是一个显性电平逻辑0
Identifier(ID)仲裁段(识别码)11/29位用来确定数据信息发送给那个设备,每一个设备都有一个属于自己的识别码,11 位标识符的帧称为标准格式,而具有29位标识符的帧为扩展格式
RTR仲裁段(RTR位)1位用来区分数据帧(0)或者远程请求帧(1)
SRR※仲裁段(SRR位)1位只用在扩展格式,替代RTR;不是扩展模式不需要这个
IDE控制段(IDE位)1位用来区分标准帧(0)还是拓展帧(1)
R0控制段(空闲位)1位保留位
DLC控制段(DLC)4位用来控制数据长度
Data Field数据段8-64位数据的内容。DLC为1时数据码8位(标准CAN),为8时数据码64位(CAN FD)
CRC15CRC码15位15位CRC位+1位CRC界定符,循环冗余校验码,检测到错误时会自动重传
DELCRC界定位1位1位CRC界定符,为了把后面信息隔开
ACK应答位(ACK码)1位接收站使用应答位来表示是否已正确接收报文
DEL应答位(ACK界定位)1位一个隐性的位,为了把后面信息隔开
EOF结束位7位表示数据帧传输结束,7个隐形信号

在这里插入图片描述

1. CAN ID

CAN帧中包含ID,在数据链路层只起到优先级判断的作用。ID的数值越小,CAN帧的优先级越高,会获得总线控制权。多节点同时开始发送数据时,按照电路设计,ID按每一bit传输时,ID小的数据会覆盖ID大的值,即0&1=0,此时只要判断到自己发出的bit1实际是收到bit0,就停止发送后续的bit,稍后重试。
CAN ID值的业务意义由应用层决定。一种典型用法是,部分bit代表消息类型,部分bit代表发送者设备,即ID和设备绑定。只要ID的前几bit代表设备号,后几bit代表业务值,就能兼顾优先级判断的规范。

2. 数据场

数据场是放高层业务数据的地方。
数据链路层协议只规定了一帧的格式,数据跨越多帧的情况由应用层协议实现拆包和重组。
经典CAN,数据场最多8bytes;CAN FD最多64bytes;CAN XL最多2048bytes,即一帧可以有更多业务数据。当一帧的业务数据量>8且
003C64时,用CAN FD就不需要在业务层把数据拆成多帧和重组了,这也提升了性能。

3)CAN总线仲裁

  1. CAN总线仲裁是通过优先级决定的。
  2. CAN总线处于空闲状态时,最先发送消息的单元获得发送权。
  3. 多个单元同时开始发送时,从仲裁段(报文ID)的第一位开始进行仲裁。连续输出显性电平最多的单元可继续发送,即首先出现隐形电平的单元失去对总线的占有权变为接收。
  4. 仲裁段(识别码Identifier)值越小,说明显性电平(逻辑0)越多,那么优先级越高。
  5. 仲裁失败的单元,会自动检测总线空闲,在第一时间再次尝试发送。
    在这里插入图片描述
  • 该仲裁机制是利用“如果总线上同时出现显性电平和隐形电平,总线的状态会被置为显性电平”这个特性进行仲裁。

十二. CAN应用层

狭义的CAN,指的是物理层和数据链路层。简单地以“CAN”作为关键字去搜索,都是这两层的知识,而广义的CAN,包括应用层协议,主流有以下3种。

1)CANopen

基于CAN2.0A定义的标准帧,由CiA提出和维护。最初是为工业自动化设计的,但很快应用在了其它领域

2)J1939

基于CAN2.0B定义的扩展帧,由SAE提出。多用于重型机械,如大巴、挖掘机、拖拉机、坦克、消防车等。

3)DeviceNet

基于CAN2.0A定义的标准帧,由美国的Allen-Bradley公司所开发。主要应用包括资讯交换、安全设备及大型控制系统,在美国的市场占有率较高。比起CANopen,对物理层的要求更严格,从而使得不同厂商的设备更通用。

这篇关于【车载开发系列】CAN通信总线再理解(中篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1079814

相关文章

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

一文教你如何解决Python开发总是import出错的问题

《一文教你如何解决Python开发总是import出错的问题》经常朋友碰到Python开发的过程中import包报错的问题,所以本文将和大家介绍一下可编辑安装(EditableInstall)模式,可... 目录摘要1. 可编辑安装(Editable Install)模式到底在解决什么问题?2. 原理3.

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT