.NET客户端实现Redis中的管道(PipeLine)与事物(Transactions)(八)

2024-06-20 23:32

本文主要是介绍.NET客户端实现Redis中的管道(PipeLine)与事物(Transactions)(八),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序言

Redis中的管道(PipeLine)特性:简述一下就是,Redis如何从客户端一次发送多个命令,服务端到客户端如何一次性响应多个命令。

Redis使用的是客户端-服务器模型和请求/响应协议的TCP服务器,这就意味着一个请求要有以下步骤才能完成:1、客户端向服务器发送查询命令,然后通常以阻塞的方式等待服务器相应。2、服务器处理查询命令,并将相应发送回客户端。这样便会通过网络连接,如果是本地回环接口那么就能特别迅速的响应,但是如果走外网,甚至外网再做一系列的层层转发,那就显的格外蛋疼。无论网络延时是多少,那么都将占用整体响应的时间。这样一来如果一次发送1个命令,网络延时为100ms,我们不得不做。那么如果1次发1000个命令,那么网络延时100*1000ms就很难容忍啦。

针对与上面的问题,Redis在2.6版本以后就都提供啦管道(Pipeline)功能。他可以使客户端在没有读取旧的响应时,处理新的请求。这样便可以向服务器发送多个命令,而不必等待答复,直到最后一个步骤中读取答复。这被称为管线(PipeLine),并且是几十年来广泛使用的技术。例如,许多POP3协议实现已经支持此功能,大大加快了从服务器下载新电子邮件的过程。

那么事务这个词汇,经常遇到,就不多唧唧啦,目标要一致就好,便是一组操作怎么做成原子性操作,使他去不了终点,回到原点。

简述wireshark抓包工具

为啦让大家对管线有更形象的感观,这一节我们先说说Wireshark抓包工具,他会让你看到客户端到服务器通过tcp协议发送的redis命令的过程与详细。

wireshark能够扑捉到系统发送和接受的每一个报文,我们这里只做一些过滤的简述。下图就是他的样子,你打开后可以可以摸索下他的用法。

简述几个过滤规则:

1、ip过滤:目标ip过滤:ip.dst==172.18.8.11,源ip地址过滤:ip.src==192.168.1.12;

2、端口过滤:tcp.port==80,这条规则是把源端口和目的端口为80的都过滤出来。使用tcp.dstport==80只过滤目的端口为80的,tcp.srcport==80只过滤源端口为80的包;

3、协议过滤:直接在fiter框中输入协议名称即可,如:http,tcp,udp,...

4、http模式过滤:过滤get包,http.request.method=="GET",过滤post包,http.request.method=="POST";

5、如果使用多条件过滤,则需要加连接符号,and。比如 ip.src==192.168.1.12 and http.request.method=="POST" and tcp.srcport==80

StackExchange.Redis实现Redis管线(Pipeline)

上两张图片管线便一目了然啦。

客户端对redis服务器进行多次请求的话,一般普通模式是这样子的

客户端对redis服务器进行多次请求的话,管道模式是这样子的

一般模式我们上代码:

复制代码
 public static void GetNoPipelining(){for (var i = 0; i < 3; i++){var key = "name:" + i;db.StringAppend(key, "张龙豪");}}
复制代码

查看tcp请求报文的data

这样你自己做的过程中,可以看到我圈起来的3个tcp请求的key分别为name:0,name:1,name:2这样子。

那么我们使用管道模式

复制代码
 public static void GetPipelining(){var batch = db.CreateBatch();for (int i = 0; i < 3; i++){var key = "mename:" + i;batch.StringAppendAsync(key, "张龙豪");}batch.Execute();}
复制代码

再来看下请求

这样很明显就能看出来是1个请求发送出来啦多个命令。那么我们不用createBatch()也是可以实现这样的效果的。

复制代码
            var a = db.StringAppendAsync("zlh:1", "zhanglonghao1");var b = db.StringAppendAsync("zlh:2", "zhanglonghao2");var c = db.StringAppendAsync("zlh:3", "zhanglonghao3");var aa = db.Wait(a);var bb = db.Wait(a);var cc = db.Wait(a);
复制代码

在接下来我们做一个简单的性能比较。代码如下:

复制代码
  static void Main(string[] args){Stopwatch watch = new Stopwatch();Stopwatch watch1 = new Stopwatch();watch.Start();GetNoPipelining();Console.WriteLine("一般循环耗时:" + watch.ElapsedMilliseconds);watch.Stop();watch1.Start();GetPipelining();Console.WriteLine("Pipelining插入耗时:" + watch1.ElapsedMilliseconds);watch1.Stop();Console.ReadLine();}public static void GetNoPipelining(){for (var i = 0; i < 5000; i++){var key = "name:" + i;db.StringAppend(key, "张龙豪");}}public static void GetPipelining(){var batch = db.CreateBatch();for (int i = 0; i < 5000; i++){var key = "mename:" + i;batch.StringAppendAsync(key, "张龙豪");}batch.Execute();}
复制代码

结果如下:

到此我还要说一下StackExchange.Redis的三种命令模式,其中使用2和3的模式发送命令,会默认被封装在管道中,不信的话,你可以做个小demo测试下:

1、sync:同步模式,会直接阻塞调用者,但不会阻塞其他线程。

2、async:异步模式,使用task模型封装。

3、fire-and-forget:发送命令,然后完全不关心最终什么时候完成命令操作。在Fire-and-Forget模式下,所有命令都会立即得到返回值,该值都是该返回值类型的默认值,比如操作返回类型是bool将会立即得到false,因为false = default(bool)。

此节参考redis官方文档与StackExchange.Redis官方文档,连接如下:

https://redis.io/topics/pipelining

https://github.com/StackExchange/StackExchange.Redis/blob/master/Docs/PipelinesMultiplexers.md

StackExchange.Redis实现Redis事务(Transactions)

这个看官方文档,我只能说实现的很奇怪吧。我先描述下我的环境,就是准备一个空redis库,然后一步一步往下走,我们写代码看结果,来搞一搞这个事务。

复制代码
 static void Main(string[] args){var tran = db.CreateTransaction();tran.AddCondition(Condition.ListIndexNotEqual("zlh:1",0,"zhanglonghao"));        tran.ListRightPushAsync("zlh:1", "zhanglonghao"); bool committed = tran.Execute();Console.WriteLine(committed);Console.ReadLine();}
复制代码

执行结果为:true。数据库中结果如下,说明我们插入成功。

即:如果key为:zlh:1的list集合在索引0初的value!=zhanglonghao的话,我们从链表右侧插入一条数据key为zlh:1value为zhanglonghao,成功。因为第一次操作为空库。0处确实不为张龙豪。

数据不清空,继续上代码。

复制代码
 static void Main(string[] args){var tran = db.CreateTransaction();tran.AddCondition(Condition.ListIndexNotEqual("zlh:1",0,"zhanglonghao"));        tran.ListRightPushAsync("zlh:1", "zhanglonghao1");           bool committed = tran.Execute();Console.WriteLine(committed);Console.ReadLine();}
复制代码

结果为false,数据库没有增减数据。已久与上图的数据保持一致。

原因分析:0处此时为zhanglonghao,所以ListIndexNotEqual("zlh:1",0,"zhanglonghao")为假命题,直接回滚,不执行下面的插入命令。

数据不清空,继续上代码:

复制代码
 static void Main(string[] args){var tran = db.CreateTransaction();tran.AddCondition(Condition.ListIndexEqual("zlh:1",0,"zhanglonghao"));        tran.ListRightPushAsync("zlh:1", "zhanglonghao1");           bool committed = tran.Execute();Console.WriteLine(committed);Console.ReadLine();}
复制代码

结果为true,数据结果如下,增长一条值为zhanglonghao1的数据:

原因分析:ListIndexEqual("zlh:1",0,"zhanglonghao")为真命题,执行下面的操作,提交事物。

数据不删继续上代码:

复制代码
static void Main(string[] args){var tran = db.CreateTransaction();tran.AddCondition(Condition.ListIndexEqual("zlh:1",0,"zhanglonghao"));        tran.ListRightPushAsync("zlh:1", "zhanglonghao2");tran.AddCondition(Condition.ListIndexNotEqual("zlh:1", 0, "zhanglonghao"));tran.ListRightPushAsync("zlh:1", "zhanglonghao3");bool committed = tran.Execute();Console.WriteLine(committed);Console.ReadLine();}
复制代码

结果为false,数据库数据已久与上面的保持一致,不增不减。

分析原因:Condition.ListIndexEqual("zlh:1",0,"zhanglonghao")为true,但是到下面的ListIndexNotEqual("zlh:1", 0, "zhanglonghao")为false。故整个事物的操作回滚,不予执行,故数据库没有变化。

到此,我就不写多余的代码啦,但我要说几个注意点:

1、执行命令的操作需为异步操作。

2、在事物中执行的命令,都不会直接看到结果,故此结果也不能用于下面代码做判断,因为当前的异步命令在Execute()之前是不会对数据库产生任何影响的。

3、参考文档:https://github.com/StackExchange/StackExchange.Redis/blob/master/Docs/Transactions.md

这篇关于.NET客户端实现Redis中的管道(PipeLine)与事物(Transactions)(八)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079567

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、